Received 2	27 Jan	2006
------------	--------	------

		110001/00	10001100 27 0011 2000			
IODP Proposal Cover Sheet		564-Full2				
New	Revised Addendum					
Please fill out infor	mation in all gray boxes	Above For Og	fficial Use Only			
Title:	Title: Shallow-Water Drilling of the New Jersey Continental Shelf: Determining the Links Between Sediment Architecture and Sea-Level Change					
Proponent(s):	Gregory S. Mountain, Kenneth G. Miller, Nicholas Christie-Blick, Peter J. Sugarman, Craig S. Fulthorpe					
Keywords: (5 or less)	New Jersey Sea Level	Area:	NJ continental shelf			
Contact Information:						
Contact Person:	Gregory Mountain					
Department:	Geosciences					
Organization:	Rutgers University					
Address	Wright Labs, 610 Taylor Rd., Piscataway, NJ 08854 USA					
Tel.:	732-445-0817 Fax: 732-44	45-3374				
E-mail:	gmtn@rci.rutgers.edu					

Permission to post abstract on IODP-MI Web site: Yes

Abstract: (400 words or less)

We propose to drill sites MAT 1-3 on the inner continental shelf of New Jersey to: 1) estimate amplitudes, rates and mechanisms of global sea-level (eustatic) change; and 2) evaluate the response of passive continental margin sedimentation to eustatic changes. The NJ Coastal Plain and continental shelf/slope comprise a "natural laboratory" for unraveling eustasy and margin sedimentation by exploiting the chance to drill a series of linked boreholes as part of the 'NJ/Mid-Atlantic Transect' (NJ/MAT). Consequently, this margin has been the focus of previous drilling both onshore and offshore (ODP Legs 150X, 174AX, 150 and 174A, respectively). Each of these efforts has successfully dated sequence boundaries and tied them to the δ^{18} O proxy of glacioeustasy, but all have fallen short of the ultimate objectives for either of two reasons: 1) the region most sensitive to sea-level change, the inner shelf, has not been sampled; and 2) drilling technology aboard the ODP drilling platform, JOIDES Resolution, is not well suited for recovering sand-prone continental shelf sediments. Consequently, a critical gap remains in the NJ/MAT and our knowledge of global sea-level change. The drilling we propose is designed to obtain deep sub-seafloor samples and downhole logging measurements in this crucial inner shelf region using a mission-specific platform. MAT 1-3 represent the most sensitive and accessible locations for bringing the NJ Transect to a successful conclusion.

Scientific Objectives: (250 words or less)

The inner to middle shelf offshore New Jersey is an ideal location to investigate the history of sea-level change and its relationship to sequence stratigraphy for several reasons: rapid depositional rates, tectonic stability, and well-preserved, cosmopolitan fossils suitable for age control characterize the sediments of this margin throughout the time interval of interest. Coring and logging along a depth transect at 3 sites embedded within a regional seismic grid and correlated to previously drilled holes both offshore and onshore will allow us to:

- 1) date major "Icehouse" (Oligocene-Recent) sequences, a time of known glacioeustatic change, and compare ages of the unconformable surfaces bracketing these sequences with ages of sea-level lowerings predicted by the δ^{18} O glacioeustatic proxy;
- 2) estimate the amplitudes, rates, and mechanisms of sea-level change; and
- 3) evaluate sequence stratigraphic facies models that predict depositional environments, sediment compositions, and stratal geometries in response to sea-level changes.

Please describe below any non-standard measurements technology needed to achieve the proposed scientific objectives.

Mission-Specific Platform

Proposed Sites:									
Site Name	Position	Water Depth (m)	Penetration (m)		m)	Brief Site-specific Objectives			
			Sed	Bsm	Total	bhei site-speenie objectives			
						determine the age, facies, and paleobathymetry of surfaces correlated with the following sequence boundaries:			
MAT-1A* MAT-1B MAT-1C	39.634091 -73.621646 39.635066 -73.620800 39.639419 -73.616619	32 32 32	752 752 752	0 0 0	752 752 752	?m5 (early Miocene) to o1 (mid Oligocene) and as old as ?Paleocene			
MAT-2D* MAT-2E MAT-2F	39.565720 -73.497266 39.567083 -73.496050 39.571200 -73.492317	35 35 34	752 752 752	0 0 0	752 752 752	?m4 (mid Miocene) to o1 (mid Oligocene) and as old as late Eocene			
MAT-3A* MAT-3B MAT-3C	39.519533 -73.413238 39.514094 -73.418144 39.525037 -73.408025	34 34 34	752 752 752	0 0 0	752 752 752	?m1 (mid Miocene) to m5.7 (early Miocene)			
*primary									

1 0. n