

Unraveling Earth's history beneath the ocean floor

Scientific ocean drilling

International Ocean Discovery Program (IODP)

addresses fundamental science through ocean drilling

CLIMATE AND OCEAN CHANGE

Reading the past to inform the future

- Temperature and precipitation changes
- Ocean chemistry and CO₂ increase
- Ice-sheet history and sea-level change

BIOSPHERE FRONTIERS

Deep life and environmental forcing of ecosystems

- Limits of life
- Biodiversity and environmental change
- Ecosystem evolution

ECORD's MISSON-SPECIFIC PLATFORMS:the European special forces of IODP

To go where no scientific drilling project has gone before

ECORD is one of the three IODP platform providers, and the only one that is able to conduct expeditions in extreme environmental conditions

MSP statistics

- 8 expeditions
 - 80 sites
- 137 holes ●
- 3,547 cores •
- 609 expedition odays
- 114,772 research samples

10,241 m drilled

8 424 m cored

6,672 m recovered

19.8 m shallowest water depth

1,568 m deepest water depth

EARTH CONNECTIONS

Deep processes impacting Earth's surface

- Structure of ocean crust and upper mantle
- Subduction zones: shifting continent and creating volcanoes

EARTH IN MOTION

Processes and hazards on human time scales

- Earthquakes,
- Tsunamis,
- Landslides

To reach new science frontiers To drill in all environments

MSP expeditions: Making impossible possible

ECORD tailors diverse ships and remote systems as determined by scientific priorities and operational efficiency

A European research infrastructure funded by public money

The European Consortium for Ocean Research Drilling

SOCIO-ECONOMIC **IMPACT**

Research that supports society, industry and governments

Ocean drilling expeditions driven by science

About 70% of our planet is still poorly unknown

ECORD scientists investigate rocks and sediments below the sea floor to unravel Earth's history

ECORD is unique within IODP as it implements expeditions by using diverse mission-specific platforms (MSPs)

ECORD expeditions adress a wide range of fundamental scientific issues concerning our Planet

Addressing fundamental issues affecting society

The Past is the Future

- Sea-level change in a warming climate
- Ecosystem crisis and biodiversity loss
 - New energy sources and mineral resources
- Earthquakes, landslides and tsunamis
- Advances in biotechnology

ECORD budget Maximum return from investment 95% direct operational costs

O ROPATION O PROPERTIES **EC**RD TECHNOVOGY

Earth continues to change.

ECORD helps to better understand major challenges facing humanity.

GLOBAL WARMING NATURAL HAZARDS LIMITED RESOURCES BIODIVERSITY LOSS

SCIENCE AND TECHNOLOGY

ECORD scientists collect and analyze data from the subseafloor to better understand how the Earth system works and how we can use our knowledge of the past to predict future

Interdisciplinary approach in an international scientific community

EDUCATION AND OUTREACH

Reaching global audience

Grants and scholarships Training the next generation of scientists

TECHNOLOGY

www.ecord.org

www.ecord.org

ECORD MISSON SPECIFIC EXPEDITIONS

Exploring Earth from the tropics to the polar ice caps with cutting-edge innovative technology

Exp 302

Arctic Coring Expedition - ACEX

2004

Moving ice

• Three operating vessels, including two ice-breakers

• First long record of sediments from the central Arctic Ocean

Exp 310

Tahiti Sea Level

Shallow-water, environmentally sensitive area

Most extensive geological research on coral reefs

Shallow water

• First use of lift boat in IODP

age (20,000 years ago)

• Ten-million years record of climate and sea-level change

• Shallow-water, environmentally sensitive area

• Sea-level and climate change since the last ice

Exp 313

New Jersey Shallow Shelf

2009

Exp 325

Great Barrier Reef Environmental Changes

2010

Gravity coring

• First microbiology-focused MSP expedition

• 140,000-years history of the Baltic Sea

Exp 347

Baltic Sea Paleoenvironment

2013

Exp 357

Atlantis Massif Seafloor Processes

2015

- Sea-floor drilling systems and borehole observatories
- Chemistry and life at hydrothermal fields in the Atlantic Ocean

Exp 364

Chicxulub **Impact Crater**

2016

- Shallowest water drilling in IODP
- Shore-based mining technology on a lift boat
- Deepest MSP penetration
- Mass extinction 65 million years ago and life recovery after an asteroid impact

Exp 381

Corinth Active Rift Development

2017

- Geohazards in an active rift system
- Tectonic processes initiating ocean basins
- Recent climate history of the Eastern Mediterranean Sea

Exp 386

Japan Trench Paleoseismology

2021

- First giant piston coring expedition in IODP
- Long history of giant earthquakes off Japan

To be scheduled

Proposal 637

Get in contact with us and explore the opportunities to get involved

Photo credits: All photos © ECORD/IODP except cover page (www.pixabay.com) and page 2 (top left: Ole Zeising, Alfred Wegener Institute, top right: IODP, bottom left: U.S. Geological Survey, bottom right: www.pixabay.com)

