| IOD | P Proposal Cover Sheet | | ſ | | 1 | | | | |-----------------------|---|----------------|----------------------------------|-----------------|------------------|--|--|--| | ☐ New | Revised | Addendum | | | | | | | | Please fill out infor | mation in all gray boxes | Abo | ove For Of | ficial Use Only | | | | | | | | | Please check | if this is N | Iission proposal | | | | | Title: | Title: A Shallow Drilling Campaign to Assess the Pleistocene Hydrogeology, Geomicrobiology, Nutrie Fluxes, and Fresh Water Resources of the Atlantic Continental Shelf, New England | | | | | | | | | Proponent(s): | M. Person, B. Dugan, R. Evans, D. Lizarralde, D. Hutchinson, H. Kooi, J.K. Groen, B. van Breukelen, W.F.M Röling, J. McIntosh, P. Sauer, K. Licht | | | | | | | | | Keywords: (5 or less) | Pleistocene, Hydrogeology, Submarine | Area: | New England
Continental Shelf | | | | | | | | Contact In | formation: | | | | | | | | Contact Person: | Mark Person | | | | | | | | | Department: | Earth and Environmental Science | | | | | | | | | Organization: | New Mexico Tech | | | | | | | | | Address | 801 Leroy Place, Socorro, NM 87801 U | SA | | | | | | | | Tel.: | +1 575 835 6506 Fax: +1 575 835 6436 | | | | | | | | | E-mail: | mperson@nmt.edu | | | | | | | | | | Permission to post abstrac | et on IODP Web | site: | Yes | No | | | | Abstract: (400 words or less) In many coastal settings worldwide, the distribution of freshwater within continental shelf sediments is far out of equilibrium with modern sea-level. One of the most remarkable examples is found on the Atlantic continental shelf off New England where groundwater within shallow Pliocene-Pleistocene sand aquifers over 100 km offshore has low salinity (3000 mg/l or less). On Nantucket Island, a 514m deep borehole penetrating the entire Cretaceous-Tertiary sedimentary package shows considerable variations in salinity with extremely fresh (<1000 mg/l) water in sand aquifers, higher salinity (30-70% of seawater) in thick clay/silt layers, and intermediate-to-low salinity in thin confining units. IODP Exp. 313 also showed abrupt freshwater-saltwater boundaries linked to lithology. This demonstrates the disequilibrium nature of such systems; diffusion tends to eliminate such patterns. Pore fluid within Pleistocene to upper Cretaceous sands beneath Nantucket Island is also found to be modestly overpressured, ~4m relative to the local water table. We hypothesize that the rapid incursion of freshwater on the continental shelf in New England could have been caused by one or more of the following mechanisms: (1) meteoric recharge during Pleistocene sea-level lowstands including vertical infiltration of freshwater associated with local flow cells on the shelf; (2) sub-ice-sheet recharge during the last glacial maximum; and (3) recharge from pro-glacial lakes. We further hypothesize that the overpressures could be due to: (1) Pleistocene sediment loading; or (2) fluid density differences associated with emplacement of a thick freshwater lens over saltwater (analogous to excess pressures in the gas legs of petroleum reservoirs). We argue these different recharge mechanisms and overpressure models can be distinguished through drilling, coring, logging, and fluid sampling. Noble gas and environmental isotope data will be necessary to completely evaluate recharge models. This work will extend our understanding of the current and past states of fluid composition, pressure, and temperature in continental shelf environments. It will help better constrain rates, directions, and mechanisms of groundwater flow and chemical fluxes in continental shelf systems. It will contribute to the development of new tools for measuring freshwater resources in marine environments. The apparent transient nature of continental shelf salinity patterns could have important implications for microbial processes and long-term fluxes of carbon, nitrogen, and other nutrients to the ocean. Successful drilling will test process-based models for shelf freshwater off New England. These models can then be applied to other shelf freshwater systems around the world. Scientific Objectives: (250 words or less) We argue that targeted drilling and coring including hydrogeochemical, microbiological, isotopic, and noble gas analysis and measurement of hydraulic properties and fluid pressures will permit us to develop a process-based understanding for the origin and volumes of offshore freshwater, how these fluids could influence local and global biogeochemical cycles, and how they record climate cycles. We propose a four site, shallow-water drilling campaign on the Atlantic continental shelf off Martha's Vineyard, MA, USA to test our hypotheses and map the distribution of freshwater resources. Our transect takes advantage of existing boreholes on Martha's Vineyard (ENW-05) and Nantucket (6001) and builds on previous AMCOR and IODP analyses. Our transect will provide samples from the freshwater, freshwater-saltwater transition, and saltwater zones allowing complete characterization of the system. Based on paleohydrologic reconstructions, we have a 2D model of the freshwater distribution and predict the freshwater-saltwater transition is approximately 50km offshore. Drilling will directly test this model and provide additional constraints for future 3D transport models. Our planned drilling campaign will require one MSP. We propose a drilling program similar to IODP Exp. 313 to increase recovery in unconsolidated sand units and a casing/screening program to facilitate collection of pristine pore fluid samples for geochemical and microbiological analyses. Post-expedition numerical models will include simulation of groundwater residence time and noble gas transport for comparison with field measurements. This highly interdisciplinary work will be one of the first focused hydrogeological-biogeochemical-microbiological studies of shelf systems. Please describe below any non-standard measurements technology needed to achieve the proposed scientific objectives. LWD, well tests in cased/screened sites, collection of noble gas samples **Proposed Sites:** | a: .v | 5 | Water | Pe | netration (| m) | D 1 4 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | |-----------------------|---------------------|-----------|-----|-------------|-------|--| | Site Name | Position | Depth (m) | Sed | Bsm | Total | Brief Site-specific Objectives | | MV-01B
(Alternate) | 41.3033 N 70.5673 W | 21 | 350 | | 350 | Characterize freshwater-dominated zone | | MV-02B
(Primary) | 41.1171 N 70.3953 W | 37 | 550 | | 550 | Characterize freshwater-dominated zone | | MV-03C
(Primary) | 40.8746 N 70.2697 W | 42 | 650 | | 650 | Characterize freshwater-saltwater transition | | MV-04B
(Primary) | 40.6206 N 70.1381 W | 52 | 750 | | 750 | Characterize freshwater-saltwater transition | | MV-05B
(Primary) | 40.3771 N 70.0119 W | 79 | 775 | | 775 | Characterize saltwater zone | ## **IODP 637-Add3 Proponents** | Proponent | Affiliation | Email | Expertise | |--|--|--------------------------------|---| | Mark Person Hydrology Program,
New Mexico Tech, USA | | mperson@nmt.edu | hydrogeology, basin-scale flow modeling | | Brandon Dugan | Dept. of Earth Science,
Rice University, USA | dugan@rice.edu | physical hydrogeology,
marine geology | | Robert Evans | Dept. of Geology &
Geophysics, Woods Hole
Oceanographic
Institution, USA | revans@whoi.edu | electromagnetic methods | | Daniel Lizarralde | Dept. of Geology &
Geophysics, Woods Hole
Oceanographic
Institution, USA | danl@whoi.edu | marine geophysics, margin processes | | Deborah Hutchinson | Coastal and Marine Geology Program, Woods Hole Science Center, U.S. Geological Survey, USA | dhutchinson@usgs.gov | marine geology and geophysics | | Henk Kooi | Dept. of Hydrology & Geo-Environmental Sciences, VU University Amsterdam, The Netherlands | henk.kooi@falw.vu.nl | hydrogeology, offshore
freshwater | | J. Koos Groen | Dept. of Hydrology & Geo-Environmental Sciences, VU University Amsterdam, The Netherlands | j.groen@acaciainstitute.nl | groundwater exploration, coastal zone hydrology | | Boris van Breukelen | Dept. of Hydrology & Geo-Environmental Sciences, VU University Amsterdam, The Netherlands | boris.van.breukelen@falw.vu.nl | contaminant hydrology, biogeochemistry | | Wilfred Röling | Dept. of Hydrology & Geo-Environmental Sciences, VU University Amsterdam, The Netherlands | wilfred.roling@falw.vu.nl | groundwater ecosystems, geomicrobiology | | Jennifer McIntosh | Dept. of Hydrology and
Water Resources,
University of Arizone,
USA | mcintosh@hwr.arizona.edu | aqueous geochemistry, isotope geochemsitry | | Peter Sauer | Dept. of Geological
Sciences, Indiana
University, USA | pesauer@indiana.edu | biogeochemistry,
paleoclimatology | | Kathy Licht | Dept. of Earth Sciences,
Indiana University-
Purdue University, USA | klicht@iupui.edu | glacial geology, quaternary geology | ## **IODP 637-Full2 Updates** This addendum to IODP 637-Full2 (New England Margin Hydrogeology) includes three primary advancements supporting our proposal to characterize and to understand the distribution and emplacement mechanisms of submarine freshwater resources, and associated nutrient and biogeochemical cycles, along the New England continental shelf: (1) we completed a high resolution seismic survey of the study region allowing more detailed characterization of the stratigraphic architecture and providing site survey data; (2) IODP Expedition 313 documented separate advection- and
diffusion-dominated freshwater-saltwater systems offshore New Jersey; and (3) IODP Expedition 313 established safe and viable drilling practices for unconsolidated shelf sediments. In addition, we provide an overview of the scientific goals and motivation for the program and an overview for each proposed site. #### Introduction In coastal settings worldwide, large freshwater volumes are sequestered in permeable continental shelf sediments. Freshwater storage and discharge have been documented off N. America, S. America, Europe, and Asia [Hathaway et al., 1979; Kooi and Groen, 2000; Taniguchi et al., 2006; Weinstein et al., 2007; Mottl and Hayashi, 2009]. In Europe, the PALAEAUX collaboration characterized coastal freshwater to evaluate climatic fluctuations and to develop management strategies [Edmunds and Milne, 2001]. In other studies, submarine groundwater discharge has been evaluated as it impacts nutrient fluxes to the ocean [Moore, 1996; Li et al., 1999; Michael et al., 2005] and as an agent of erosion [Robb, 1984]. We propose to study the Atlantic continental shelf off New England where freshwater extends up to 100 km offshore. Using high-resolution mathematical models and existing well data, we estimate that ~1300 km³ of freshwater is sequestered from New York to Maine, and up to 3x10⁵ km³ may be sequestered along passive margins worldwide [Cohen et al., 2010]. These worldwide, vast quantities of freshwater represent a resource to urban coastal centers, if accurately characterized and managed [Custodio et al., 2001]. In IODP 637-Full2, we propose four primary sites (MV-02B, MV-03C, MV-04B, and MV-05B) off Martha's Vineyard (New England, USA) to determine source, volume, and emplacement of this freshwater. The emplacement hypotheses are: (1) meteoric recharge during sea-level lowstands; and (2) sub-ice sheet meltwater recharge during glaciations. These different mechanisms can be distinguished using environmental isotope and noble gas data. Our study builds on data from seismic and coring ventures from the 1970s. Site survey data collected in 2009 provide new, high-resolution constraints on the stratigraphic architecture of the study region. Our proposed sites will obtain focused hydrogeochemical and microbiological samples across the freshwater-saltwater zone and will characterize the hydrological properties of the shelf. These samples and data will help us define the hydrogeological, geochemical, and biological processes within the shelf and what drives them. ## **Preliminary Models** Dip models based on USGS Line 5 examine the impacts that aquiclude (silt) connectivity has on freshwater distribution. The models invoke two stratigraphic architectures that are not differentiable with the vintage seismic and well data (**Figs. 1a,b**) [Kohout et al., 1977; Hathaway et al., 1979; Valentine, 1981; Poag, 1982; Schlee and Fritsch, 1982; Klitgord et al., 1994; Person et al., 1998; Person et al., 2003]. The differences between the models are the connectivity of the Cretaceous-Tertiary silt and the termination of the Cretaceous carbonate (**Figs. 1a,b**). We simulated sea-level variations for 1.8 million years using a 120-m amplitude, 100,000-year period and included one cycle of ice sheet loading (glaciation). Details of the modeling methods and sediment properties can be found in Marksammer et al. [2007], Person et al. [2007], and Cohen et al., [2010]. These simulations show that freshwater volume is greatly affected by silt connectivity. When continuous silt aquicludes separate aquifers (**Fig. 1a**), we predict freshwater 50 km offshore to 200 m below seafloor (**Fig. 1c**). This freshwater is pervasive in the shallowest sediments and fingers into deeper sediments. When the silt is discontinuous (**Fig. 1b**), the freshwater volume decreases by 50%, but still exists far offshore (**Fig. 1d**). Recently acquired site survey data are being used to update the stratigraphic geometry and numerical model predictions of freshwater distribution. IODP <u>drilling will provide additional constraints on lithology and hydrogeological parameters and direct measurements of fluid composition to test the models.</u> Fig. 1. (a) Stratigraphic framework for the preliminary model with continuous silt aquicludes. (b) Stratigraphic framework for the preliminary model with discontinuous silt aquicludes. (c) Simulated salinity for the continuous-aquiclude model a. (d) Simulated salinity for the discontinuous-aquiclude model b. Recent drilling offshore New Jersey in IODP Expedition 313 provided new information on the freshwater-saltwater transition within the continental shelf. Drilling and porewater sampling documented a complex distribution of freshwater and saltwater 45-65 km offshore New Jersey [Mountain et al., 2009]. The shallow sedimentary section had sharp freshwater-saltwater boundaries that were closely linked with stratigraphy; in the deeper section, and farther offshore, a gradual increase in salinity with depth was observed with salinity exceeding that of modern seawater [Mottl and Hayashi, 2009]. These distinct and different (sharp boundary vs. gradual transition) trends in porewater chemistry suggest that advective and diffusive systems are active along within the continental shelf. These systems operate at different spatial and temporal scales. With these data and the additional sample and data from the focused approach of IODP 637-Full2, we will enhance our knowledge of fluid and chemical fluxes and their variation in continental shelf sediments. Successful drilling of IODP 637-Full2 combined with high-resolution stratigraphic data, two-dimensional electromagnetic surveys, and numerical modeling will provide process-based understanding of global, offshore freshwater. This project will have <u>broad, interdisciplinary, scientific impact</u> because of the role this freshwater plays in nutrient fluxes to the ocean, geochemical and deep-biosphere processes in shelf sediments, and long-term, episodic greenhouse gas emissions. A better understanding of these large freshwater reservoirs will have <u>broad, societal impacts</u>, as these waters are a potential source available for increasing global freshwater demands. ## **Site Survey** In August 2009, we completed an NSF-funded survey (NSF 0824263) that collected >1000 km of high-resolution, multi-channel seismic (MCS) data in the proposed study region (**Fig. 2**). The seismic data, including crossing lines at proposed sites MV-02B, MV-03C, MV-04B, and MV-05B, have been submitted to the IODP SSDB for evaluation by the SSP and EPSP. In addition, a complete environmental and safety report will be submitted to EPSP before their next meeting (~June 2010). Fig. 2. Trackmap for high-resolution MCS data (black lines) collected in August 2009 on the R/V Endeavor. Each line also has 3.5 kHz echosounder profiling. Proposed IODP sites are labeled in red. Primary sites are MV-02B, MV-03C, MV-04B, and MV-05B. MV-01B is an alternate site. Contours are water depth (20m, 50m, and 100m). We imaged the Cretaceous-Tertiary units using Scripps's high-resolution multichannel streamer (48-channel, 600-m) with a 45/105 in³ generator/injector (GI) gun source. For our shallow water shelf setting, the system provided ~6 m vertical resolution and allowed imaging to ~1 km (Fig. 3). Each seismic line (Fig. 2) also has 3.5 kHz echosounder data that were collected during the survey. The MCS seismic data are being used to map and characterize the details of the capping Plio-Pleistocene section. This thin Plio-Pleistocene section is where we speculate that recharge of freshwater may have occurred during sea-level lowstands and where submarine discharge of freshwater may be active today. Ongoing mapping and better seismic constraints on stratigraphy will increase the predictive capability of our modeling efforts. **Fig. 3.** Example of high-resolution seismic data collected in study region. (Left) Portion of dip seismic line 1 (located in **Fig. 2**) crossing MV-03C (red line). (Right) Portion of strike seismic line 8 (located in Fig. 2) crossing line 1 at MV-03C (red line). CDP spacing is 6.25m. Initial processing of the seismic data included top and bottom mutes, bandpass filter (3-6-120-240 Hz), F-K filter, true amplitude recovery (7dB/s), normal moveout correction, and CDP stacking. This processing stream focused on imaging the shallow stratigraphy (Fig. 3). We continue to process and to interpret the data including detailed velocity analysis, mapping key stratigraphic horizons, and making isochron/isopach maps. Our advanced processing is focusing on multiple suppression for better near-seafloor imaging and velocity analysis for hazard assessment and depth migration of the profiles. Final stacked sections will be used to define the three-dimensional stratigraphic architecture for numerical models of the study area. These models will provide estimates of *in situ* fluid chemistry and fluid age that will be tested by the drilling proposed in 637-Full2. In addition to seismic data, we anticipate collecting towed electromagnetic (EM) data to image the two-dimensional resistivity structure of the shallow subsurface near each proposed site. The EM data will be combined with logging and pore fluid data to provide an image of freshwater distribution across the region, which will serve as additional tests for the numerical models. ## **Drilling and Sampling** We propose four primary sites (**Fig. 2**) to assess freshwater volumes, freshwater emplacement mechanisms, the freshwater-saltwater transition, and the impact of mixed fluids on nutrient cycling and biogeochemistry. Based on our models (**Fig. 1**), we are confident that the proposed sites will allow us to characterize the freshwater, transition, and saltwater zones. This will allow us to complete the science objectives with one mission specific platform (MSP) eliminating multi-platform costs. Our drilling campaign will use IODP drilling for an MSP
based on the success of IODP Expedition 313, which had 80% core recovery for New Jersey shelf sediments [Mountain et al., 2009]. Based on similar lithology between the New Jersey shelf and the shelf offshore Martha's Vineyard, MA, and similar target depths, we are confident that a similar drilling strategy will provide the data we need to achieve our science goals. In addition to drilling and coring, we propose an LWD program and detailed porewater sampling with hydrogeologic (e.g., packer) tests. The LWD data will provide high quality information on lithology and fluids through gamma ray, density, and resistivity imaging for core-log-seismic correlation and for characterizing any unrecovered intervals. It will also provide first-look data prior to coring so we can establish key horizons for hydrogeologic testing. Hydrogeologic tests are required to collect formation fluids from permeable aquifers. These fluids are necessary to understand nutrient fluxes, fluid origin, and age. These tests also provide well-scale hydrogeologic properties (e.g., storativity, permeability) for input to numerical models and for comparison with shorebased tests on core samples. The tests are non-standard in IODP, but MSP flexibility and existing technology will facilitate these types of experiments. To assess technology options for casing and sampling shelf fluids, a project-scoping meeting was held between the proponents, IODP-MI, ESO, and Schlumberger (24 April 2007). From this meeting, we are confident that existing methods and tools (e.g., Westbay Multiport Sampler) on an MSP can overcome water/sediment sampling problems experienced by ODP and AMCOR in unconsolidated sections. Interpreted survey data will help decide which technology is best for our sites. We look forward to working with ESO to develop the best drilling and sampling strategy to maximize science with existing technology while managing operation costs. #### **Site Overviews** *Site MV-02B (primary)* is proposed for 550 m of penetration to characterize the freshwater-dominated zone of the system. We anticipate that we will sample Late Pleistocene glacial meltwater and meteoric water with increasing amounts of seawater. Salinity should be higher in fine-grained units. Drilling will penetrate Pleistocene-Upper Cretaceous unconsolidated to poorly consolidated sands, silts, and clays with thin (20 cm) coal stringers. Sample analysis will focus on pore fluid chemistry, noble gas, ¹⁸O, ²H, ¹⁴C, ¹³C, ⁸¹Kr, ⁴He, permeability, porosity, compressibility, and DNA/RNA analysis to assess fluid origin, flow behavior, and microbial activity. Crossing seismic lines (**Fig. 2**) exist for this site. *Site MV-03C (primary)* is proposed for 650 m of penetration to characterize the freshwater-saltwater transition zone. We anticipate that we will sample Late Pleistocene glacial meltwater and meteoric water with increasing amounts of seawater relative to MV-02B and also with increasing depth. Salinity should be higher in fine-grained units. Drilling will penetrate Pleistocene-Upper Cretaceous unconsolidated to poorly consolidated sands, silts, and clays. Sample analysis will focus on pore fluid chemistry, noble gas, ¹⁸O, ²H, ¹⁴C, ¹³C, ⁸¹Kr, ⁴He, permeability, porosity, compressibility, and DNA/RNA analysis to assess fluid origin, flow behavior, and microbial activity. Crossing seismic lines (**Fig. 2**) exist for this site. *Site MV-04B (primary)* is proposed for 750 m of penetration to characterize the freshwater-saltwater transition zone. We anticipate that we will sample significant amounts of seawater with some freshening due to Late Pleistocene glacial meltwater and meteoric water. With increasing depth, salinity should increase and may exceed that of modern seawater such as observed in IODP Expedition 313 [*Mottl and Hayashi*, 2009]. Salinity should be higher in fine-grained units. Drilling will penetrate Pleistocene-Upper Cretaceous unconsolidated to poorly consolidated sands, silts, and clays. Sample analysis will focus on pore fluid chemistry, noble gas, ¹⁸O, ²H, ¹⁴C, ¹³C, ⁸¹Kr, ⁴He, permeability, porosity, compressibility, and DNA/RNA analysis to assess fluid origin, flow behavior, and microbial activity. Crossing seismic lines (**Fig. 2**) exist for this site. *Site MV-05B (primary)* is proposed for 775 m of penetration to characterize the saltwater end member of the system. We anticipate that we will sample Pleistocene seawater in the shallow section, with salinity increasing above that of modern seawater with depth [e.g., *Mottl and Hayashi*, 2009]. Drilling will penetrate Pleistocene-Upper Cretaceous unconsolidated to poorly consolidated sands, silts, and clays. Carbonates may be encountered at the bottom of the site. Sample analysis will focus on pore fluid chemistry, noble gas, ¹⁸O, ²H, ¹⁴C, ¹³C, ⁸¹Kr, ⁴He, permeability, porosity, compressibility, and DNA/RNA analysis to assess fluid origin, flow behavior, and microbial activity. Crossing seismic lines (**Fig. 2**) exist for this site. Site MV-01B (alternate to MV-02B) is proposed for 350 m of penetration to characterize the freshwater end member of system. We anticipate that we will sample Holocene meteoric water and/or Late Pleistocene glacial meltwater with minor amounts of seawater at depth >300 m. Drilling will penetrate Pleistocene-Upper Cretaceous unconsolidated to poorly consolidated sands, silts, and clays with thin (20 cm) coal stringers. Sample analysis will focus on pore fluid chemistry, noble gas, ¹⁸O, ²H, ¹⁴C, ¹³C, ⁸¹Kr, ⁴He, permeability, porosity, compressibility, and DNA/RNA analysis to assess fluid origin, flow behavior, and microbial activity. No high-resolution data were collected at this site due to shallow water conditions. #### Societal Relevance With increasing global demands for freshwater, sequestered continental shelf freshwater represents a large, untapped resource. These demands have led to local and regional coastal freshwater studies and management plans in Europe [*Custodio et al.*, 2001; *Edmunds*, 2001]. In our study region, more than 1300 km³ of freshwater may exist [*Cohen et al.*, 2010], which would help coastal cities (e.g., New York City uses 1.5 km³/yr), if efficiently managed. Globally these coastal freshwater resources will become more important with time; successful use rests upon a process-based understanding of their short-term and long-term behavior, which IODP 637-Full2 will help determine. #### References - Cohen, D., Person, M., Wang, P., Gable, C.W., Hutchinson, D., Marksamer, A., Dugan, B., Kooi, H., Groen, K., Lizarralde, D., Evans, R.L., Day-Lewis, F.D., Lane Jr., J.W., 2010, Origin and Extent of Fresh Paleowaters Beneath the Atlantic Continental Shelf, New England, Ground Water, 48(1), 143-158, doi:10.1111/j.1745-6584.2009.00627.x. - Custodio, E., W.M. Edmunds, and Y. Travi, 2001, Management of coastal palaeowaters, Geological Society of London Special Publications, 189, 313-327. - Edmunds, W.M. and C.J. Milne (eds), 2001, Palaeowaters in coastal Europe: evolution of groundwater since the late Pleistocene, Geological Society of London, Special Publication, 189, 332 pp. - Grow, J.A., and J.S. Schlee, 1976, Interpretation and velocity analysis of U.S. Geological Survey multichannel reflection profiles 4, 5, and 6, Atlantic continental margin, U.S. Geological Survey Miscellaneous Field Series Map MF-808. - Hathaway, J.C., C.W. Poag, P.C. Valentine, R.E. Millerk, D.M. Schultz, F.T. Manheim, F.A. Kohout, M.H. Bothner, and D.A. Sangrey, 1979, U.S. Geological Survey core drilling on the Atlantic Shelf, Science, 206(4418), 515-527. - Hutchinson, D.R., K.D. Klitgord, and R.S. Detrick, 1986, Rift basins of the Long Island Platform, GSA Bull., 97, 688-702. - Klitgord, K.D., J.S. Schlee, and K. Hinz, 1982, Basement structure, sedimentation, and tectonic history of the Georges Bank Basin, in P.A. Scholle and C.R. Wenkam, eds., United States North Atlantic continental shelf; Geological studies of the COST Nos G-1 and G-2 wells, U.S. Geological Survey Circular 861, 160-186. - Klitgord, K.D., C.M. Schneider, and L. North, 1994, Geophysical database of the East Coast of the United States Northern Atlantic Margin: cross sections and gridded database (Georges Bank basin, Long Island platform, and Baltimore Canyon trough): U.S. Geological Survey Open-File Report OF94-637, 189 pp. - Kohout, F.A., J.C. Hathaway, D.W. Folger, M.H. Bothner, E.H. Walker, D.F. Delaney, M.H. Frimpter, E.G.A. Weed, and E.V.C. Rhodehamel, 1977, Fresh groundwater stored in aquifers under the continental shelf, Implications from a deep test, Nantucket Island, Massachusetts, Water Resources Bulletin, 13(2), 373-386. - Kooi, H. and J. Groen, 2000, Modes of seawater intrusion during transgressions, Water Resources Research, 36(12), 3581-3589. - Li, L., D.A. Barry, F. Sagnitti, and J.Y. Parlange, 1999, Submarine groundwater discharge - and associated chemical input into the sea, Water Resources Research, 35(11), 3253-3259. - Marksamer, A.J., M.A. Person, F.D. Day-Lewis, J.W. Lane, Jr., D. Cohen, B. Dugan, H. Kooi, M. Willet, 2007, Integrating geophysical, hydrochemical, and hydrologic data to understand the freshwater resources on Nantucket Island, Massachusetts, in Hyndman, D.W., F.D. Day-Lewis, K. Singha (eds), AGU Geophysical Monograph 171 Subsurface Hydrology: Data Integration for Properties and Process, doi:10.1029/171GM12. - Michael, H.A., A.E. Mulligan, C.F. Harvey, 2005, Seasonal oscillations in water exchange between aquifers and the coastal ocean, Nature, 436, doi:10.1038/nature03935. - Moore, W.S, 1996, Large groundwater inputs to coastal waters revealed by ²²⁶Ra enrichments, Nature, 380, 612-614. - Mottl, M.J., Hayashi, T., 2009, Fresh and salty: chemistry of sediment pore water from the New Jersey shelf: IODP Exp. 313, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract PP31A-1293. - Mountain, G.S., Proust, J., McInroy, D., Expedition 313 Science Party, 2009, Links between eustatic history, sequence
architecture, and lithofacies associations put to the test: IODP Exp. 313 drilling on the NJ Margin, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract PP31C-1362. - Person, M., McIntosh, J. Bense, V. and V.H. Remenda, 2007, Pleistocene Hydrology of North America: The Role of Ice Sheets in Reorganizing Groundwater Flow Systems, Reviews of Geophysics, 45, RG3007, doi:10.1029/2006RG000206. - Person, M., B. Dugan, J.B. Swenson, L. Urbano, C. Stott, J. Taylor, and M. Willett, 2003, Pleistocene hydrogeology of the Atlantic continental shelf, New England, GSA Bull., 115, 1324-1343. - Person, M., J. Taylor, and S. L. Dingman, 1998, Sharp-Interface Models of Salt Water Intrusion and Well Head Delineation on Nantucket Island, Massachusetts, Ground Water, 36, 731-742. - Poag, C.W., 1982, Stratigraphic reference section for Georges Bank Basin-Depositional model for New England Passive Margin, AAPG Bull., 66(8), 1021-1041. - Robb, J.M., 1984, Spring sapping on the lower continental slope, offshore New Jersey, Geology, 12, 278-282. - Schlee, J. S. and J. Fritsch, 1982, Seismic stratigraphy of the Georges Bank Basin complex offshore New England, AAPG Memoir 43, 223-251. - Taniguchi, M., T. Ishitobi, J. Shimada, 2006, Dynamics of submarine groundwater discharge and freshwater-seawater interface, J. Geophys. Res., 111, C01008, doi:10.1029/2005JC002924. - Valentine, P. C., 1981, Continental margin stratigraphy along the U.S. Geological Survey seismic Line 5 Long Island platform and western Georges Bank basin: U.S. Geological Survey Miscellaneous Field Studies Map MF-857, 2 sheets. - Weinstein, Y., W.C. Burnett, P.W. Swarzenski, Y. Shalem, Y. Yechieli, B. Herut, 2007, Role of aquifer heterogeneity in fresh groundwater discharge and seawater recycling: an example from the Carmel coast, Israel, J. Geophys. Res., 112, C12016, doi:10.1029/2007JC004112. #### Form 1 - General Site Information Please fill out information in all gray boxes Revised 7 March 2002 | New | Revised | | |-----|---------|--| ## **Section A:** Proposal Information Title of Proposal: A Shallow Drilling Campaign to Assess the Pleistocene Hydrogeology, Geomicrobiology, Nutrient Fluxes, and Fresh Water Resources of the Atlantic Continental Shelf, New England Date Form Submitted: 01/15/10 Site Specific Objectives with Priority (Must include general objectives in proposal) The primary objectives of drilling are to characterize the distribution of fresh-to-brackish water on the Atlantic continental shelf and to understand the fluid emplacement mechanisms which were active on the continental shelf during the Pleistocene. We will measure chemistry, microbiology, fluid pressure, and isotopic composition of the Atlantic continental shelf aquifers and confining units. MV-01B will characterize the freshwater-dominated zone of the transect. Three holes will be drilled. Hole A is for petrophysics. Hole B will be continuously cored and used for hydrogeologic tests and detailed water chemistry sampling. Hole C will be for spot coring for the collection of pristine microbiological samples. List Previous Drilling in Area: AMCOR wells 6001, 6009, 6020, 6021; COST wells B-2, G-1, G-2, ODP Leg 174A, IODP Exp. 313 ### **Section B:** General Site Information | Site Name:
(e.g. SWPAC-01A) | MV-01B | If site is a reoccupation
of an old DSDP/ODP
Site, Please include
former Site # | Area or Location: | New
shelf | |--------------------------------|----------------|--|-------------------|--------------| | Latitude: | Deg: 41.3033 N | Min: | Jurisdiction: | USA | | Longitude: | Deg: 70.5673 W | Min: | Distance to Land: | 6 km | | Coordinates
System: | WGS 84, | Other () | | | | Priority of Site: | Primary: | Alt: X | Water Depth: | | | a or Location: | New
shelf | England | continental | |----------------|--------------|---------|-------------| | Jurisdiction: | USA | | | | ance to Land: | 6 km | | | Water Depth: 21 m # **Section C:** Operational Information | | Sediments | | | | Basement | | | | | | | | | |---------------------------------|---|----------|-----------------|-----------------------|----------|--------|-----------------------|------------|----------|--------------|-----------------|---------------------|-------------| | Proposed Penetration: | Recent to Cretaceous sediments | | | | | N | Not applicable | | | | | | | | (m) | What is the total sed. thickness? 350 m | To | tal Pene | etrati | on: 35 | 0 | m | | General Lithologies: | Sand, silt, a | nd c | elay | | | | | | | | | | | | Coring Plan: (Specify or check) | Plan will be | | | | | | | | | | | • | 313. | | | 1-2-3-APC | VPC | * 🗌 X | CB M | DCB* |] PC | CS RC | B Re- | -entry = |] H
Syste | RGB
ms Curre |]
ently Under D |)evelopment | | Wireline Logging
Plan: | Standard 7 | Cools | , | | | Spec | cial Too | ls | | | | LWD |) | | i iaii. | Neutron-Porosity | | В | orehole Te | leviewe | r 🗆 | Formatio | on Fluid S | Sampling | g | Densi | ity-Neutron | | | | Litho-Density | | | clear Magi
sonance | netic | | Borehole
& Pressur | | ure | | Resisti | vity-Gamm | a Ray | | | Gamma Ray | | Ge | ochemical | | | Borehole | Seismic | | | Acoust | tic | | | | Resistivity | | | le-Wall Co
mpling | re | | | | | | | | | | | Acoustic | | | | | | | | | | | | | | | Formation Image | | | | | | Others (| | |) | Others | (|) | | Max.Borehole Temp.: | Expected value | For I | Riser D
——°C | rilling) | | | | | | | | | | | Mud Logging: | Cuttings San | nplin | | rvals | | | | | | | | | | | (Riser Holes Only) | froi | n | | m | to | | | m, | | | 1 | m interva | ls | | | froi | n _ | | m | to | | | m, | | | 1 | m interva | ls | | | | | | | | | | | | Bas | sic Sam | pling Inte | rvals: 5m | | Estimated days: | Drilling/Coring: | 9.9 | | Loggin | g: 1.9 | | | | Total | | ite: 11. | | | | Future Plan: | Longterm Boreh | | bservai | | | ry Pla | an - None | | | | | <u> </u> | | | | o o | | | | | • | | | | | | | | | Hazards/ | Please check fol | lowin | g List o | of Potentia | al Hazo | ırds | | | | | What | is your W | eather | | Weather: | Shallow Gas | c | _ | ed Seabed C | ondition | | irothermal A | ctivity | | | winde | ow? (Prefe | erable | | | | | | | | | | | | | • | with the r | | | | Hydrocarbon | | Soft Seab | ed | | Lands | slide and Tu | bidity Cur | rent | _ | | h – Aug
nurrican | _ | | | Shallow Water Flow | | Currents | | | Meth | ane Hydrate | | | | | torms | ics und | | | Abnormal Pressure | | Fractured | Zone | | Diapi | r and Mud V | /olcano | |] | | | | | | Man-made Objects | 1 | Fault | | | High | Temperature | ; | |] | | | | | | H ₂ S | | High Dip | Angle | | Ice C | onditions | | |] | | | | | | CO ₂ | | | | | | | | | | | | | ## Form 2 - Site Survey Detail Date Form Submitted: 01/15/10 ## **IODP Site Summary Forms:** Proposal #: 637-Full2 Please fill out information in all gray boxes New Revised Site #: MV-01B | | | SSP | E:-4- | | | |------|-------------------------------------|-------------------|-----------------|--|---------| | | Data Type | Requir-
ements | Exists
In DB | Details of available data and data that are still to be collected | | | 1 | High resolution seismic reflection | | | Primary Line(s): :Location of Site on line (SP or Time on Crossing Lines(s): | iy) | | 2 | Deep Penetration seismic reflection | | | Primary Line(s): Location of Site on line (SP or Time Crossing Lines(s): | e only) | | 3 | Seismic Velocity [†] | | | | | | 4 | Seismic Grid | | | | | | 5a | Refraction (surface) | | | | | | 5b | Refraction (near bottom) | | | | | | 6 | 3.5 kHz | | | Location of Site on line (Time) |) | | 7 | Swath bathymetry | | | | | | 8a | Side-looking
sonar (surface) | | | | | | 8b | Side-looking sonar (bottom) | | | | | | 9 | Photography or Video | | | Assorted USGS imagery exists | | | 10 | Heat Flow | | | | | | 11a | Magnetics | | | | | | 11b | Gravity | | | | | | 12 | Sediment cores | | | Assorted grab samples from USGS exist | | | 13 | Rock sampling | | | | | | 14a | Water current data | | | Available | | | 14b | Ice Conditions | | | | | | 15 | OBS microseismicity | | | | | | 16 | Navigation | | | | | | 17 | Other | | | | | | SSPC | Classification of Site: | | SSP Wate | tchdog: Date of Last Review: | | | | Comments: | | man | Dute of Dust Review. | | | 551 | ommonto. | | | | | | L | | | | | | X=required; X^* =may be required for specific sites; Y=recommended; Y^* =may be recommended for specific sites; R=required for re-entry sites; T=required for high temperature environments; † Accurate velocity information is required for holes deeper than 400m. # Form 3 - Detailed Logging Plan # **IODP Site Summary Forms:** | New | Revised | | |-----|---------|--| |-----|---------|--| | Proposal #: 637-Full2 | | #: MV-01B | | Date Form Submitted: 01/15/10 | | | | |
--|---|---|------------------------|-------------------------------|-----------------|--|--|--| | Water Depth (m): 21 | Sed. | Penetration (m): 35 | 0 B | asement Penetration (1 | n): 0 | | | | | Do you need to use the conical side-entry sub (CSES) at this site? Yes ☐ No ■ | | | | | | | | | | Are high temperatures expected | d at this site? | | Yes □ | No ■ | | | | | | Are there any other special requ | | gging at this site? | Yes - | No \square | | | | | | If "Yes" Please describe r | | | LWD | | | | | | | What do you estimate the total | logging time fo | or this site to be: | 1.9 days | | Relevance | | | | | Measurement Type | | Scien | tific Objective | | (1=high, 3=Low) | | | | | Neutron-Porosity | Alternate to L | WD density-neutro | n; not required if run | LWD | 2 | | | | | Litho-Density | Alternate to l | LWD density-neutr | on and gamma ray | ; not required if run | 2 | | | | | Natural Gamma Ray | Alternate to L | Alternate to LWD gamma ray; not required if run LWD | | | | | | | | Resistivity-Induction | Alternate to L | 2 | | | | | | | | Acoustic | Detailed sonic velocity for synthetic seismograms and core-log-seismic integration | | | | | | | | | FMS | Alternate to L | WD resistivity-gam | nma ray; not required | l if run LWD | 2 | | | | | BHTV | Not required | | | | 3 | | | | | Resistivity-Laterolog | | • | required if run LWI | | 2 | | | | | Magnetic/Susceptibility | Alternate litho | ologic indicator; no | t required if run LWI |) | 2 | | | | | Density-Neutron (LWD) | ensity-Neutron (LWD) High-quality density characterization of sediments in an intact borehole to define bulk physical properties. | | | | | | | | | Resitivity-Gamma Ray | High-quality | | aracterization of | the sediments, | 1 | | | | | (LWD) | freshwater-saltwater porewater determination, and data for formation factor (microbiology, fluids) in an intact borehole. | | | | | | | | | Other: Special tools (CORK, | Packers for hy | ydro tests and porev | vater analysis (chemi | ical, biologic); VSP | 1 | | | | | PACKER, VSP, PCS, FWS,
WSP | | | | | | | | | | L | | | | | | | | | | For help in determining logging times, please contact the ODP-LDEO Wireline Logging Services group at: borehole@ldeo.columbia.edu http://www.ldeo.columbia.edu/BRG/brg_home.html Phone/Fax: (914) 365-8674 / (914) 365-3182 Note: Sites with great penetration or suppressed to the penetration of suppression of suppression of suppression of suppress | | | | | | | | | # Form 4 – Pollution & Safety Hazard Summary # **IODP Site Summary Forms:** Please fill out information in all gray boxes | New | Revised | | |-----|---------|--| | | | | | Proposal #: 637-Full2 | | Site #: MV-01B | Date Form Submitted: 01/15/10 | |-----------------------|--|---|--| | | | | | | 1 | Summary of Operations at site: (Example: Triple-APC to refusal, XCB 10 m into basement, log as shown on page 3.) | APC to refusal, followed by XCB and RCI Drilling plan will be similar to that of IODF TDs. | | | 2 | Based on Previous DSDP/ODP drilling, list all hydrocarbon occurrences of greater than background levels. Give nature of show, age and depth of rock. | No previous DSDP/ODP/IODP drilling at the IODP Exp. 313 did not have hydrocarbon issu | | | 3 | From Available information, list
all commercial drilling in this
area that produced or yielded
significant hydrocarbon shows.
Give depths and ages of
hydrocarbon-bearing deposits. | Previous USGS and COST drilling did not ind | licate any hydrocarbon occurrence. | | 4 | Are there any indications of gas hydrates at this location? | No gas hydrate indications at this location. | | | 5 | Are there reasons to expect hydrocarbon accumulations at this site? Please give details. | No reason to expect accumulation of hydrocar
not show hydrocarbons, and documented that
velocity analysis does not show any hydrocarb | source rocks are immature. Initial seismic | | 6 | What "special" precautions will be taken during drilling? | A drilling program utilizing conductor pipe, maintain formation integrity, maximize scientools. | | | 7 | What abandonment procedures do you plan to follow: | Standard IODP procedures of abandonment building off procedures of IODP Exp. 313. | will be followed for shallow MSP holes | | 8 | Please list other natural or
manmade hazards which may
effect ship's operations.
(e.g. ice, currents, cables) | Fishing and lobster trapping are common in exists nearby. These hazards are easily micrommunication and notification. | | | 9 | Summary: What do you consider the major risks in drilling at this site? | Borehole stability and integrity/maintenance v | vill be the major risk drilling this site. | # Form 5 – Lithologic Summary | | | | | | New | Revise | ed (| |-----------------------------|---|--|---------------------------------|------------------|-----------------------|--|----------| | Proposal # | : 637-Full2 | Site #: MV | V-01B | Date Form | Submitted: 01/15/10 | | | | Sub-
bottom
depth (m) | Key reflectors,
Unconformities,
faults, etc | Age | Assumed
velocity
(km/sec) | Lithology | Paleo-environme
nt | Avg. rate
of sed.
accum.
(m/My) | Comments | | 0-350 | | <cret.< td=""><td>1.5-2.0</td><td>Silt, sand, clay</td><td>Shelf</td><td></td><td></td></cret.<> | 1.5-2.0 | Silt, sand, clay | Shelf | #### Form 1 - General Site Information Please fill out information in all gray boxes Revised 7 March 2002 | New | Revised | | |-----|---------|--| ## **Section A:** Proposal Information Title of Proposal: A Shallow Drilling Campaign to Assess the Pleistocene Hydrogeology, Geomicrobiology, Nutrient Fluxes, and Fresh Water Resources of the Atlantic Continental Shelf, New England Date Form Submitted: 01/15/10 Site Specific Objectives with Priority (Must include general objectives in proposal) The primary objectives of drilling are to characterize the distribution of fresh-to-brackish water on the Atlantic continental shelf and to understand the fluid emplacement mechanisms which were active on the continental shelf during the Pleistocene. We will measure chemistry, microbiology, fluid pressure, and isotopic composition of the Atlantic continental shelf aquifers and confining units. MV-02B will characterize the freshwater-dominated zone of the transect. Three holes will be drilled. Hole A is for petrophysics. Hole B will be continuously cored and used for hydrogeologic tests and detailed water chemistry sampling. Hole C will be for spot coring for the collection of pristine microbiological samples. List Previous Drilling in Area: AMCOR wells 6001, 6009, 6020, 6021; COST wells B-2, G-1, G-2, ODP Leg 174A, IODP Exp. 313 ### **Section B:** General Site Information | Site Name: | MV-02B | | If site is a reoccupation of an old DSDP/ODP | | |------------------------|----------------|-----|--|--| | (e.g. SWPAC-01A) | | | Site, Please include
former Site # | | | Latitude: | Deg: 41.1171 N | Mi | n: | | | Longitude: | Deg: 70.3953 W | Mi | n: | | | Coordinates
System: | WGS 84, | Oth | ner () | | | Priority of Site: | Primary: X | Al | t: | | Area or Location: New England continental
shelf USA Distance to Land: New England continental 27 km Water Depth: 37 m # **Section C:** Operational Information | | Sediments | | | | | | Basement | | | | | | | |---------------------------------|-------------------------------------|-----------|-----------------------|------------------------|---------|--------|-----------------------|----------------|----------|---------|-------------------------|------------------------------|----------| | Proposed Penetration: | Recent to Cre | etaceo | ous s | edime | nts | | N | Not applicable | | | | | | | (m) | What is the total sec | l. thickn | ness? | 550 | n | ı | | | | | | | | | G 17:1 1 : | ~ | | | | | | | То | tal Pene | etratio | n: 550 | | m | | General Lithologies: | Sand, silt, and | d clay | y | | | | | | | | | | | | Coring Plan: (Specify or check) | Plan will be o | | • | | | | | | | | | Exp. 31 | 3. | | | 1-2-3-APC V | PC* [| _ XCE | MIL. | Св | PC | S L KC | B Ke | e-entry | Systen | RGB 🔲
ns Currentl | v Under Dev | elopment | | Wireline Logging
Plan: | Standard To | | | | | | cial Too | | | | | LWD | | | | Neutron-Porosity Litho-Density | | Nucle | ehole Tele
ear Magn | | | Borehole | | | | Density-
Resistivity | Neutron
y-Gamma | Ray | | | Gamma Ray | | | nance
hemical | | | & Pressur
Borehole | | | | Acoustic | | | | | Resistivity | | Side- | Wall Cor | e | | | | | | | | | | | Acoustic | | | - 6 | | | | | | | | | | | Max.Borehole | Formation Image Expected value (Fa | Or Pigg | m Duil | lina) | | | Others (| |) |) | Others (| |) | | Temp. : | Expeciea value (F) | or Kise | <i>-r Dr</i> u
-°C | ung) | | | | | | | | | | | Mud Logging: | Cuttings Samp | ling I | nterv | als | | | | | | | | | | | (Riser Holes Only) | from | | | _ m | to | | | m, | | | m | intervals | | | | from | | | _ m | to | | | m, | | | m | intervals | | | | | | | | | | | | | Basi | ic Sampli | ing Interv | als: 5m | | Estimated days: | Drilling/Coring: 1: | 5.6 |] | Logging | : 3.0 | | | | Total 0 | | te: 18.6 | | | | Future Plan: | Longterm Borehol | e Obse | rvatio | n Plan/F | Re-enti | y Pla | ın - None | | 1 | Hazards/ | Please check follo | wing I | ist of i | Potentia | l Haza | rde | | | | | What is | your Wea | ther | | Weather: | Shallow Gas | | - | | | | lrothermal A | ctivity | | | window | ? (Prefere | able | | | |] | | | | | | | | _ | | th the rea | | | | Hydrocarbon |] Soft | Seabed | | | Lands | slide and Tur | bidity Cui | rrent | | | Auguricane | | | | Shallow Water Flow | Curre | ents | | | Metha | ane Hydrate | | | | nter sto | | o una | | | Abnormal Pressure | Fract | ured Zo | one | | Diapi | r and Mud V | /olcano | | | | | | | | Man-made Objects | Fault | | | | High ' | Temperature | ; | | | | | | | | H ₂ S |] High | Dip An | igle | | Ice Co | onditions | | | | | | | | | CO ₂ |] | ## Form 2 - Site Survey Detail # **IODP Site Summary Forms:** Please fill out information in all gray boxes New Revised | osal # | t: 637-Full2 | | Site #: | MV-02B | Date Form Submitted: 01/15/10 | |--------|-------------------------------------|--------------------------|-----------------|---|---| | | Data Type | SSP
Requir-
ements | Exists
In DB | Details of av | vailable data and data that are still to be collected | | 1 | | | | Primary Line(s):
Line 1 (CDP 16382) | :Location of Site on line (SP or Time only) | | | High resolution seismic reflection | | | Crossing Lines(s):
Line 7 (CDP 1750) | | | 2 | Deep Penetration seismic reflection | | | Primary Line(s): USGS Line 5 Crossing Lines(s): | Location of Site on line (SP or Time of | | 3 | Seismic Velocity [†] | | | Interval velocity from s | eismic processing | | 4 | Seismic Grid | | | 2D seismic grid of cont | inental shelf collected in 2009 | | 5a | Refraction (surface) | | | | | | 5b | Refraction (near bottom) | | | | | | 6 | 3.5 kHz | | | Collected along 2D seis | Location of Site on line (Time) smic lines on continental shelf in 2009 | | 7 | Swath bathymetry | | | | | | 8a | Side-looking
sonar (surface) | | | | | | 8b | Side-looking sonar (bottom) | | | | | | 9 | Photography or Video | | | Assorted USGS imager | y exists | | 10 | Heat Flow | | | | | | 11a | Magnetics | | | | | | 11b | Gravity | | | | | | 12 | Sediment cores | | | Assorted grab samples | from USGS exist | | 13 | Rock sampling | 1 | | 4 7 11 | | | 14a | Water current data | 1 | - | Available | | | 14b | Ice Conditions | | | | | | 15 | OBS microseismicity | | | | | | 16 | Navigation | | | | | | 17 | Other | | | | | | SSPC | Classification of Site: | | SSP Wate | chdog: | Date of Last Review: | | | Comments: | , | oor wall | muog. | Date of Last Review. | X=required; X*=may be required for specific sites; Y=recommended; Y*=may be recommended for specific sites; R=required for re-entry sites; T=required for high temperature environments; † Accurate velocity information is required for holes deeper than 400m. # Form 3 - Detailed Logging Plan # **IODP Site Summary Forms:** | New | Revised | | |-----|---------|--| |-----|---------|--| | Proposal #: 637-Full2 | Site #: MV-02B | | ate Form Submitted: 0 | | | | | | |--|---|---|------------------------|-----------------|--|--|--|--| | Water Depth (m): 37 | Sed. Penetration (| m): 550 B | asement Penetration (1 | n): 0 | | | | | | Do you need to use the conical | side-entry sub (CSES) at the | is site? Yes □ | No | | | | | | | Are high temperatures expected | I at this site? | Yes | No | | | | | | | Are there any other special requ | irements for logging at this | site? Yes | No \square | | | | | | | If "Yes" Please describe r | requirements: | LWD | | | | | | | | What do you estimate the total | logging time for this site to | be: 3 days | | Relevance | | | | | | Measurement Type | | Scientific Objective | | (1=high, 3=Low) | | | | | | Neutron-Porosity | Alternate to LWD density- | neutron; not required if run | LWD | 2 | | | | | | Litho-Density | Alternate to LWD density LWD | y-neutron and gamma ray; | not required if run | 2 | | | | | | Natural Gamma Ray | Alternate to LWD gamma | Alternate to LWD gamma ray; not required if run LWD | | | | | | | | Resistivity-Induction | Alternate to LWD resistivi | 2 | | | | | | | | Acoustic | Detailed sonic velocity for integration | 1 | | | | | | | | FMS | Alternate to LWD resistivi | ty-gamma ray; not required | if run LWD | 2 | | | | | | BHTV | Not required | | | 3 | | | | | | Resistivity-Laterolog | | ity; not required if run LWD | | 2 | | | | | | Magnetic/Susceptibility | Alternate lithologic indicate | tor; not required if run LWE |) | 2 | | | | | | Density-Neutron (LWD) | High-quality density chara
define bulk physical prope | acterization of sediments in erties. | an intact borehole to | 1 | | | | | | Resitivity-Gamma Ray | High-quality lithologic | | the sediments, | 1 | | | | | | (LWD) | factor (microbiology, fluid | | | | | | | | | Other: Special tools (CORK, | Packers for hydro tests and | d porewater analysis (chemi- | cal, biologic); VSP | 1 | | | | | | PACKER, VSP, PCS, FWS,
WSP | PCS, FWS, | | | | | | | | | | | | | | | | | | | at:
borehole@ldeo.columbi
http://www.ldeo.columb | For help in determining logging times, please contact the ODP-LDEO Wireline Logging Services group Note: Sites with greater | | | | | | | | # Form 4 – Pollution & Safety Hazard Summary # **IODP Site Summary Forms:** Please fill out information in all gray boxes | New | | Revised | | |-----|---------------|---------|--| | | $\overline{}$ | | | | P | roposal #: 637-Full2 | Site #: MV-02B | Date Form Submitted: 01/15/10 | | | | | |---|--|--|--|--|--|--|--| | | - | | , | | | | | | 1 | Summary of Operations at site: (Example: Triple-APC to refusal, XCB 10 m into basement, log as shown on page 3.) | APC to refusal, followed by XCB and RCB as necessary to reach TD in sedimen Drilling plan will be similar to that of IODP Exp. 313 based on similar lithology and TDs. | | | | | | | 2 | Based on Previous DSDP/ODP drilling, list all hydrocarbon occurrences of greater than background levels. Give nature of show, age and depth of rock. | No previous DSDP/ODP/IODP drilling at the IODP Exp. 313 did not have hydrocarbon issu | | | | | | | 3 | From Available information, list
all commercial drilling in this
area that produced or yielded
significant hydrocarbon shows.
Give depths and ages of
hydrocarbon-bearing deposits. | Previous USGS and COST drilling did not ind | licate any hydrocarbon occurrence. | | | | | | 4 | Are there any indications of gas hydrates at this location? | No gas hydrate indications at this location. | | | | | | | 5 | Are there reasons to expect hydrocarbon accumulations at this site? Please give details. | No reason to expect accumulation of hydrocar
not show hydrocarbons, and documented that
velocity analysis does not show any hydrocarb | source rocks are immature. Initial seismic | | | | | | 6 | What "special" precautions will be taken during drilling? | A drilling program utilizing conductor pipe, maintain formation integrity, maximize scientools. | | | | | | | 7 | What abandonment procedures do you plan to follow: | Standard IODP procedures of
abandonment building off procedures of IODP Exp. 313. | will be followed for shallow MSP holes | | | | | | 8 | Please list other natural or
manmade hazards which may
effect ship's operations.
(e.g. ice, currents, cables) | Fishing and lobster trapping are common in exists nearby. These hazards are easily micrommunication and notification. | | | | | | | 9 | Summary: What do you consider the major risks in drilling at this site? | Borehole stability and integrity/maintenance w | vill be the major risk drilling this site. | | | | | # Form 5 – Lithologic Summary | | | | | | New | Revise | ed | |-----------------------------|---|--|---------------------------------|------------------|-----------------------|--|----------| | Proposal # | : 637-Full2 | Site #: MV | 7-02B | Date Form S | Submitted: 01/15/10 | | | | Sub-
bottom
depth (m) | Key reflectors,
Unconformities,
faults, etc | | Assumed
velocity
(km/sec) | Lithology | Paleo-environme
nt | Avg. rate
of sed.
accum.
(m/My) | Comments | | 0-550 | | <cret.< td=""><td>1.5-2.0</td><td>Silt, sand, clay</td><td>Shelf</td><td></td><td></td></cret.<> | 1.5-2.0 | Silt, sand, clay | Shelf | # Site Summary Form 6 Proposal 637 Site MV-02B Line 1 CDP 16382; Line 7 CDP 1750 ## **SSDB Data Files** Regional CDP Trackline Map mv_cdpmap_annotate.pdf Seismic Data Figures line1_mv02.pdf; line1_mv02_w_site.pdf; line7_mv02.pdf; line7_mv02_w_site.pdf SEG-Y Data line1_stack.segy; line7_stack.segy Navigation Data line1_nav.txt; line7_nav.txt #### Form 1 - General Site Information Please fill out information in all gray boxes Revised 7 March 2002 | New | Revised | | |-----|---------|--| ## **Section A:** Proposal Information Title of Proposal: A Shallow Drilling Campaign to Assess the Pleistocene Hydrogeology, Geomicrobiology, Nutrient Fluxes, and Fresh Water Resources of the Atlantic Continental Shelf, New England Date Form Submitted: 01/15/10 Site Specific Objectives with Priority (Must include general objectives in proposal) The primary objectives of drilling are to characterize the distribution of fresh-to-brackish water on the Atlantic continental shelf and to understand the fluid emplacement mechanisms which were active on the continental shelf during the Pleistocene. We will measure chemistry, microbiology, fluid pressure, and isotopic composition of the Atlantic continental shelf aquifers and confining units. MV-03C will characterize the freshwater-saltwater transition zone of the transect. Three holes will be drilled. Hole A is for petrophysics. Hole B will be continuously cored and used for hydrogeologic tests and detailed water chemistry sampling. Hole C will be for spot coring for the collection of pristine microbiological samples. List Previous Drilling in Area: AMCOR wells 6001, 6009, 6020, 6021; COST wells B-2, G-1, G-2, ODP Leg 174A, IODP Exp. 313 ### **Section B:** General Site Information | Site Name: | MV-03C | | If site is a reoccupation of an old DSDP/ODP | | | |------------------------|-------------------|------|--|--|--| | (e.g. SWPAC-01A) | | | Site, Please include former Site # | | | | Latitude: | Deg: 40.8746 N | Mi | | | | | Longitude: | Deg: 70.2697 W | Min: | | | | | Coordinates
System: | WGS 84, Other () | | | | | | Priority of Site: | Primary: X | Al | t: | | | Area or Location: New England continental shelf USA Distance to Land: New England continental shelf Water Depth: 42 m # **Section C:** Operational Information | | | S | edim | ents | | | | | | Ва | asem | nent | | | |---------------------------------|--|----------|------------------|-----------------------|----------|--------|--------------------|----------------|----------|---------------------|-----------------|-------------------------|----------|---------| | Proposed Penetration: | Recent to C | Cretac | ceous | sedime | ents | | 1 | Not ap | plica | ble | | | | | | (m) | What is the total | sed. thi | ckness? | 650 | n | 1 | | | | | | | | | | | | | | | | | | , | Total P | enetra | tion: | 650 | | m | | General Lithologies: | Sand, silt, a | ind c | lay | | | | | | | | | | | | | Coring Plan: (Specify or check) | Plan will be developed based on the successful approach of IODP Exp. 313. 1-2-3-APC ■ VPC* □ XCB ■ MDCB*□ PCS □ RCB ■ Re-entry□ HRGB□ | | | | | | | | | | | | | | | | 1-2-3-APC | VPC, | · П ХС | CB MI | OCB*_ |] PC | CS L R | СВ | Re-entry | У <u> </u>
* Sys | HRG:
stems C | B∐
Currently Un | der Deve | lopment | | Wireline Logging Plan: | Standard 7 | Γools | | | | Spec | cial To | ols | | | | Ľ | WD | | | | Neutron-Porosity | | | rehole Tel | | r 🗆 | | tion Flui | | ling | D | ensity-Ne | utron | | | | Litho-Density | | | lear Magn
onance | etic | | Borehol
& Press | e Tempe
ure | rature | | Re | sistivity-G | amma R | lay 🗖 | | | Gamma Ray | | | chemical | | | Borehol | e Seismi | ic | | Ac | oustic | | | | | Resistivity | | | e-Wall Cor
npling | re | | | | | | | | | | | | Acoustic | | | | | | | | | | | | | | | | Formation Image | | | | | | Others (| | |) | Otl | hers (| |) | | Max.Borehole
Temp. : | Expected value | (For K | diser Dr
——°C | illing) | | | | | | | | | | | | Mud Logging: | Cuttings San | nplin | • , | vals | | | | | | | | | | | | (Riser Holes Only) | fro | m | | m | to | | | m, | | | | m int | ervals | | | | _ | | | | to | | | ,
m, | _ | | | m int | | | | | | | | | • | | | , | | R | asic S | Sampling | | ls: 5m | | Estimated days: | Drilling/Coring | 18.6 | | Logging | . 35 | | | | Tot | al On- | | | 11110114 | | | Future Plan: | Longterm Borel | | hservati | | | rv Pla | ın - Non | 0 | 100 | | Ditc. | 22.1 | | | | Tuture Tran. | Longierm Borer | iore or |)SCI van | | ac ciii | yıu | 11011 | .c | | | | | | | | Hazards/ | Please check for | llowin | g List oj | ^r Potentia | l Haza | ırds | | | | | W | hat is you | ır Weat | her | | Weather: | Shallow Gas | C | omplicate | d Seabed Co | ondition | Нус | lrothermal | Activity | | | | indow? (1
iod with i | - | | | | Hydrocarbon | □ s | oft Seabe | d | | Lands | slide and T | Curbidity (| Current | | | arch – | _ | | | | Shallow Water Flow | | Currents | | | Metha | ane Hydra | te | | | | d hurri
er storm | | and | | | Abnormal Pressure | F F | ractured 2 | Zone | | Diapi | r and Mud | Volcano | | | | | | | | | Man-made Objects | ■ F | ault | | | High | Temperatu | ıre | | | | | | | | | H ₂ S | H | ligh Dip A | angle | | Ice C | onditions | | | | | | | | | | CO_2 | | | | | | | | | | | | | | ## Form 2 - Site Survey Detail # **IODP Site Summary Forms:** Please fill out information in all gray boxes New Revised | pposal #: 637-Full2 | | | Site #: | MV-03C | Date Form Submitted: 01/15/10 | |---------------------|-------------------------------------|--------------------------|-----------------|---|--| | | Data Type | SSP
Requir-
ements | Exists
In DB | Details of a | available data and data that are still to be collected | | 1 | High resolution seismic reflection | | | Primary Line(s): Line 1 (CDP 11751) Crossing Lines(s): | :Location of Site on line (SP or Time only) | | 2 | Deep Penetration seismic reflection | | | Line 8 (CDP 1785) Primary Line(s): USGS Line 5 Crossing Lines(s): | Location of Site on line (SP or Time of | | 3 | Seismic Velocity [†] | | | Interval velocity from | seismic processing | | 4 | Seismic Grid | | | 2D seismic grid of con | tinental shelf collected in 2009 | | 5a | Refraction (surface) | | | | | | 5b | Refraction (near bottom) | | | | | | 6 | 3.5 kHz | | | Collected along 2D sei | Location of Site on line (Time) ismic lines on continental shelf in 2009 | | 7 | Swath bathymetry | | | | | | 8a | Side-looking
sonar (surface) | | | | | | 8b | Side-looking sonar (bottom) | | | | | | 9 | Photography or Video | | | Assorted USGS image | ry exists | | 10 | Heat Flow | | | | | | 11a | Magnetics | | | | | | 11b | Gravity | | | | | | 12 | Sediment cores | | | Assorted grab samples | from USGS exist | | 13 | Rock sampling | | | | | | 14a | Water current data | | | Available | | | 14b | Ice Conditions | | | | | | 15 | OBS microseismicity | | | | | | 16 | Navigation | | | | | | 17 | Other | | | | | | SSP | Classification of Site: | | SSP Wate | .hdog. | Date of Last Review: | | | Comments: | | JOI WALL | | Dute of Lust Review. | X=required; X*=may be required for specific sites; Y=recommended; Y*=may be recommended for specific sites; R=required for re-entry sites; T=required for high temperature environments; † Accurate velocity information is required for holes deeper than 400m. # Form 3 - Detailed Logging Plan # **IODP Site Summary Forms:** | New | Revised | | |-----|---------|--| |-----|---------|--| | Proposal #: 637-Full2 | Site #: MV-03C | () 650 | | ate Form Submitted: 01/15/10 | | | | | |--|---|------------------------------------|--------------------------|--|--|--|--|--| | Water Depth (m): 42 | Sed. Penetration | (m): 650 | Basement Penetration (1 | n): 0 | | | | | | Do you need to use the conical | side-entry sub (CSES) at tl | his site? Yes □ | No ■ | | | | | | | Are high temperatures expected | | | | | | | | | | Are high temperatures expected at this site? Yes ☐ No ☐ Are there any
other special requirements for logging at this site? Yes ☐ No ☐ | | | | | | | | | | If "Yes" Please describe r | | | | | | | | | | What do you estimate the total | What do you estimate the total logging time for this site to be: 3.5 days | | | | | | | | | Measurement Type | | Scientific Objective | | (1=high, 3=Low) | | | | | | Neutron-Porosity | Alternate to LWD density | y-neutron; not required if | run LWD | 2 | | | | | | Litho-Density | Alternate to LWD densi | ty-neutron and gamma r | ay; not required if run | 2 | | | | | | Natural Gamma Ray | Alternate to LWD gamma | a ray; not required if run I | WD | 2 | | | | | | Resistivity-Induction | Alternate to LWD resistiv | vity; not required if run LV | VD | 2 | | | | | | Acoustic | Detailed sonic velocity integration | for synthetic seismogran | s and core-log-seismic | 1 | | | | | | FMS | Alternate to LWD resistiv | vity-gamma ray; not requi | ed if run LWD | 2 | | | | | | BHTV | Not required | | | 3 | | | | | | Resistivity-Laterolog | | vity; not required if run LV | | 2 | | | | | | Magnetic/Susceptibility | Alternate lithologic indic | ator; not required if run L' | WD | 2 | | | | | | Density-Neutron (LWD) | High-quality density char
define bulk physical prop | racterization of sediments erties. | in an intact borehole to | 1 | | | | | | Resitivity-Gamma Ray High-quality lithologic characterization of the sediments, 1 | | | | | | | | | | (LWD) | freshwater-saltwater porewater determination, and data for formation factor (microbiology, fluids) in an intact borehole. | | | | | | | | | Other: Special tools (CORK, Packers for hydro tests and porewater analysis (chemical, biologic); VSP | | | | 1 | | | | | | PACKER, VSP, PCS, FWS,
WSP | , VSP, PCS, FWS, | | | | | | | | | | | | | | | | | | | For help in determining logging time at: borehole@ldeo.columbi http://www.ldeo.columb Phone/Fax: (914) 365-86 | a.edu
ia.edu/BRG/brg_home.html |) Wireline Logging Services gro | penetration or s | significant basement
aire deployment of | | | | | # Form 4 – Pollution & Safety Hazard Summary # **IODP Site Summary Forms:** Please fill out information in all gray boxes | New | Revised | | |-----|---------|--| | | | | | P | roposal #: 637-Full2 | Site #: MV-03C | Date Form Submitted: 01/15/10 | |---|--|--|---| | | | | | | 1 | Summary of Operations at site: (Example: Triple-APC to refusal, XCB 10 m into basement, log as shown on page 3.) | | CB as necessary to reach TD in sediment. DP Exp. 313 based on similar lithology and | | 2 | Based on Previous DSDP/ODP drilling, list all hydrocarbon occurrences of greater than background levels. Give nature of show, age and depth of rock. | No previous DSDP/ODP/IODP drilling at IODP Exp. 313 did not have hydrocarbon is | this location. Nearby ODP Leg 174A and sues. | | 3 | From Available information, list
all commercial drilling in this
area that produced or yielded
significant hydrocarbon shows.
Give depths and ages of
hydrocarbon-bearing deposits. | Previous USGS and COST drilling did not i | ndicate any hydrocarbon occurrence. | | 4 | Are there any indications of gas hydrates at this location? | No gas hydrate indications at this location. | | | 5 | Are there reasons to expect hydrocarbon accumulations at this site? Please give details. | | carbons. Previous hydrocarbon evaluation did
nat source rocks are immature. Initial seismic
arbon indicators. | | 6 | What "special" precautions will be taken during drilling? | | be, casing, and drilling mud will be used to cience, and protect the BHA and downhole | | 7 | What abandonment procedures do you plan to follow: | Standard IODP procedures of abandonmen building off procedures of IODP Exp. 313. | nt will be followed for shallow MSP holes | | 8 | Please list other natural or
manmade hazards which may
effect ship's operations.
(e.g. ice, currents, cables) | | in the region. A regional shipping lane also mitigated for MSP operations using radio | | 9 | Summary: What do you consider the major risks in drilling at this site? | Borehole stability and integrity/maintenance | e will be the major risk drilling this site. | # Form 5 – Lithologic Summary | | | | New | Revise | ea | |--|---------------------------|-----------------------------|--|---|--| | Site #: MV | V-03C | Date Form S | Submitted: 01/15/10 |) | | | | Assumed velocity (km/sec) | Lithology | Paleo-environme
nt | Avg. rate
of sed.
accum.
(m/My) | Comments | | <cret.< td=""><td>1.5-2.0</td><td>Silt, sand, clay</td><td>Shelf</td><td></td><td></td></cret.<> | 1.5-2.0 | Silt, sand, clay | Shelf | | | | | | | | | | | | s, Age | s, Age velocity
(km/sec) | Assumed
s, Age velocity Lithology
(km/sec) | Site #: MV-03C Date Form Submitted: 01/15/10 Assumed s, Age velocity Lithology Paleo-environme (km/sec) nt | Site #: MV-03C Date Form Submitted: 01/15/10 Avg. rate s, Age velocity Lithology Paleo-environme of sed. (km/sec) nt accum. (m/My) | # Site Summary Form 6 Proposal 637 Site MV-03C Line 1 CDP 11751; Line 8 CDP 1785 ## **SSDB Data Files** Regional CDP Trackline Map mv_cdpmap_annotate.pdf Seismic Data Figures line1_mv03.pdf; line1_mv03_w_site.pdf; line8_mv03.pdf; line8_mv03_w_site.pdf SEG-Y Data line1_stack.segy; line8_stack.segy Navigation Data line1_nav.txt; line8_nav.txt #### Form 1 - General Site Information Please fill out information in all gray boxes Revised 7 March 2002 | New | Revised | | |-----|---------|--| ## **Section A:** Proposal Information Title of Proposal: A Shallow Drilling Campaign to Assess the Pleistocene Hydrogeology, Geomicrobiology, Nutrient Fluxes, and Fresh Water Resources of the Atlantic Continental Shelf, New England Date Form Submitted: 01/15/10 Site Specific Objectives with Priority (Must include general objectives in proposal) The primary objectives of drilling are to characterize the distribution of fresh-to-brackish water on the Atlantic continental shelf and to understand the fluid emplacement mechanisms which were active on the continental shelf during the Pleistocene. We will measure chemistry, microbiology, fluid pressure, and isotopic composition of the Atlantic continental shelf aquifers and confining units. MV-04B will characterize the freshwater-saltwater transition zone of the transect. Three holes will be drilled. Hole A is for petrophysics. Hole B will be continuously cored and used for hydrogeologic tests and detailed water chemistry sampling. Hole C will be for spot coring for the collection of pristine microbiological samples. List Previous Drilling in Area: AMCOR wells 6001, 6009, 6020, 6021; COST wells B-2, G-1, G-2, ODP Leg 174A, IODP Exp. 313 ### **Section B:** General Site Information | Site Name: | MV-04B | If site is a reoccupation of an old DSDP/ODP | |------------------------|----------------|--| | (e.g. SWPAC-01A) | | Site, Please include | | | | former Site # | | Latitude: | Deg: 40.6206 N | Min: | | Longitude: | Deg: 70.1381 W | Min: | | Coordinates
System: | WGS 84, | Other () | | Priority of Site: | Primary: X | Alt: | | | | | Area or Location: New England continental shelf USA Distance to Land: 87 km Water Depth: 52 m ## **Section C:** Operational Information | | | Sed | iments | | | | | В | asem | ent | | |---------------------------------|------------------------|----------|--------------------------|-----------|---------|--------------------------|-------------|-------------|-----------------|----------------------------------|-------------| | Proposed Penetration: | Recent to Cre | tacec | ous sedin | nents | | No | ot appl | icable | | | | | (m) | What is the total sed. | . thickn | ess? 750 | n | 1 | | | | | | | | G 17:1 1 : | - · · · · | | | | | | Tot | al Penetra | ation: | 750 | m | | General Lithologies: | Sand, silt, and | l clay | • | | | | | | | | | | Coring Plan: (Specify or check) | Plan will be d | | - | | | | | | | • | 313. | | | 1-2-3-APC V | PC* L | XCB N | MDCB* |] PCS | S \square RCE | Ke- | entry* Sy | HRGE
stems C | urrently Under I | Development | | Wireline Logging
Plan: | Standard Too | ols | | | | ial Tool | s | | | LWI |) | | | | | Borehole T
Nuclear Ma | | | Borehole T | Temperatu | ampling ure | _ | ensity-Neutror
sistivity-Gamn | | | | - | | Resonance
Geochemica | ıl | _ | & Pressure
Borehole S | | | _ | oustic | | | | Resistivity [| | Side-Wall C
Sampling | ore | | | | | | | | | | | | | | | Others (| |) | Oth | ners (|) | | Max.Borehole
Temp. : | Expected value (Fo | | r Drilling)
°C | | | | | , | 1000 | (| , | | Mud Logging: | Cuttings Sampl | ling I | ntervals | | | | | | | | | | (Riser Holes Only) | from | | m | to | | | m, | | | m interva | als | | | from | | m | to | | | m, | | | m interva | als | | | | | | | | | | 1 | Basic S | ampling Inte | ervals: 5m | | Estimated days: | Drilling/Coring: 21 | .4 | Loggi | ng: 4.0 | | | | Total On | | | | | Future Plan: | Longterm Borehole | Obser | vation Plar | ı/Re-enti | ry Plai | n - None | Hazards/ | Please check follow | ving Li | st of Potent | ial Haza | ırds | | | | W | hat is your W | leather | | Weather: | Shallow Gas | Compl | icated Seabed |
Condition | Hydr | othermal Ac | ctivity | | | indow? (Pref
iod with the 1 | | | | Hydrocarbon | Soft S | Seabed | | Landsl | ide and Turl | bidity Curr | | | rch – Au | _ | | | Shallow Water Flow | Curre | nts | | Methai | ne Hydrate | | | | d hurricar
r storms | ies and | | | Abnormal Pressure | Fracti | ired Zone | | Diapir | and Mud Vo | olcano | | | | | | | Man-made Objects | Fault | | | High T | emperature | | | | | | | | H ₂ S | High | Dip Angle | | Ice Co | nditions | | | | | | | | CO ₂ | | | | | | | | | | | ## Form 2 - Site Survey Detail ## **IODP Site Summary Forms:** Please fill out information in all gray boxes New Revised | osal ‡ | #: 637-Full2 | | Site #: | MV-04B | Date Form Submitted: 01/15/10 | |--------|-------------------------------------|--------------------------|-----------------|---|--| | | Data Type | SSP
Requir-
ements | Exists
In DB | Details of avail | able data and data that are still to be collected | | 1 | High resolution seismic reflection | | | Primary Line(s): Line 1 (CDP 6901) Crossing Lines(s): | :Location of Site on line (SP or Time onl | | 2 | Deep Penetration seismic reflection | | | Line 9 (CDP 1821) Primary Line(s): USGS Line 5 Crossing Lines(s): | Location of Site on line (SP or Time | | 3 | Seismic Velocity [†] | | | Interval velocity from seis | smic processing | | 4 | Seismic Grid | | | 2D seismic grid of contine | ental shelf collected in 2009 | | 5a | Refraction (surface) | | | | | | 5b | Refraction (near bottom) | | | | | | 6 | 3.5 kHz | | | Collected along 2D seism | Location of Site on line (Time ic lines on continental shelf in 2009 | | 7 | Swath bathymetry | | | Ü | | | 8a | Side-looking
sonar (surface) | | | | | | 8b | Side-looking sonar (bottom) | | | | | | 9 | Photography or Video | | | Assorted USGS imagery 6 | exists | | 10 | Heat Flow | | | | | | 11a | Magnetics | | | | | | 11b | Gravity | | | | | | 12 | Sediment cores | | | Assorted grab samples fro | m USGS exist | | 13 | Rock sampling | | | | | | 14a | Water current data | | | Available | | | l4b | Ice Conditions | | | | | | 15 | OBS microseismicity | | | | | | 16 | Navigation | | | | | | 17 | Other | | | | | | SSP | Classification of Site: | | SSP Wat | chdog: | Date of Last Review: | | | Comments: | , | 351 Wat | chaog. | Date of East Review. | X=required; X*=may be required for specific sites; Y=recommended; Y*=may be recommended for specific sites; R=required for re-entry sites; T=required for high temperature environments; † Accurate velocity information is required for holes deeper than 400m. ## Form 3 - Detailed Logging Plan ## **IODP Site Summary Forms:** | New | Revised | | |-----|---------|--| |-----|---------|--| | Proposal #: 637-Full2 | Site #: MV-04B | | ate Form Submitted: 0 | | |---|--|--|------------------------|--| | Water Depth (m): 52 | Sed. Penetration (| m): /50 B | asement Penetration (1 | n): 0 | | Do you need to use the conical | side-entry sub (CSES) at thi | is site? Yes □ | No | | | Are high temperatures expected | at this site? | Yes | No | | | Are there any other special requ | | | No \square | | | If "Yes" Please describe re | equirements: | LWD | | | | What do you estimate the total l | ogging time for this site to | · | | Relevance | | Measurement Type | Ale A LWD 1 ' | Scientific Objective | LWD | (1=high, 3=Low) | | Neutron-Porosity | Alternate to LWD density- | neutron; not required if run | LWD | 2 | | Litho-Density | Alternate to LWD density LWD | y-neutron and gamma ray; | not required if run | 2 | | Natural Gamma Ray | Alternate to LWD gamma | ray; not required if run LW | D | 2 | | Resistivity-Induction | Alternate to LWD resistivi | 2 | | | | Acoustic | Detailed sonic velocity for integration | 1 | | | | FMS | Alternate to LWD resistivi | ty-gamma ray; not required | if run LWD | 2 | | BHTV | Not required | | | 3 | | Resistivity-Laterolog | Alternate to LWD resistivi | ty; not required if run LWD | | 2 | | Magnetic/Susceptibility | Alternate lithologic indicate | tor; not required if run LWE |) | 2 | | Density-Neutron (LWD) | High-quality density chara
define bulk physical prope | acterization of sediments in rties. | an intact borehole to | 1 | | Resitivity-Gamma Ray | High-quality lithologic | | the sediments, | 1 | | (LWD) | freshwater-saltwater pore
factor (microbiology, fluid | water determination, and s) in an intact borehole. | data for formation | | | Other: Special tools (CORK, | Packers for hydro tests and | d porewater analysis (chemi- | cal, biologic); VSP | 1 | | PACKER, VSP, PCS, FWS, | | | | | | WSP | | | | | | | | | | | | For help in determining logging time at: borehole@ldeo.columbia http://www.ldeo.columbia Phone/Fax: (914) 365-86 | a.edu
a.edu/BRG/brg_home.html | Wireline Logging Services group | | significant basement
aire deployment of | ## Form 4 – Pollution & Safety Hazard Summary ## **IODP Site Summary Forms:** Please fill out information in all gray boxes | New | Revised | | |-----|---------|--| | | | | | P | roposal #: 637-Full2 | Site #: MV-04B | Date Form Submitted: 01/15/10 | |---|--|--|--| | | | | | | 1 | Summary of Operations at site: (Example: Triple-APC to refusal, XCB 10 m into basement, log as shown on page 3.) | | CCB and RCB as necessary to reach TD in sediment. that of IODP Exp. 313 based on similar lithology and | | 2 | Based on Previous DSDP/ODP drilling, list all hydrocarbon occurrences of greater than background levels. Give nature of show, age and depth of rock. | No previous DSDP/ODP/IODF IODP Exp. 313 did not have hyo | drilling at this location. Nearby ODP Leg 174A and drocarbon issues. | | 3 | From Available information, list
all commercial drilling in this
area that produced or yielded
significant hydrocarbon shows.
Give depths and ages of
hydrocarbon-bearing deposits. | Previous USGS and COST drilling | ng did not indicate any hydrocarbon occurrence. | | 4 | Are there any indications of gas hydrates at this location? | No gas hydrate indications at the | s location. | | 5 | Are there reasons to expect hydrocarbon accumulations at this site? Please give details. | | on of hydrocarbons. Previous hydrocarbon evaluation did
cumented that source rocks are immature. Initial seismic
any hydrocarbon indicators. | | 6 | What "special" precautions will be taken during drilling? | | nductor pipe, casing, and drilling mud will be used to naximize science, and protect the BHA and downhole | | 7 | What abandonment procedures do you plan to follow: | Standard IODP procedures of
building off procedures of IODF | abandonment will be followed for shallow MSP holes PExp. 313. | | 8 | Please list other natural or
manmade hazards which may
effect ship's operations.
(e.g. ice, currents, cables) | | e common in the region. A regional shipping lane also are easily mitigated for MSP operations using radio | | 9 | Summary: What do you consider the major risks in drilling at this site? | Borehole stability and integrity/ | maintenance will be the major risk drilling this site. | # **IODP Site Summary Forms:** ## Form 5 – Lithologic Summary | | | | | | New | Revise | ed | |-----------------------------|---|--|---------------------------------|------------------|-----------------------|--|----------| | Proposal # | : 637-Full2 | Site #: MV | V-04B | Date Form S | Submitted: 01/15/10 |) | | | Sub-
bottom
depth (m) | Key reflectors,
Unconformities,
faults, etc | Age | Assumed
velocity
(km/sec) | Lithology | Paleo-environme
nt | Avg. rate
of sed.
accum.
(m/My) | Comments | | 0-750 | | <cret.< td=""><td>1.5-2.0</td><td>Silt, sand, clay</td><td>Shelf-slope</td><td></td><td></td></cret.<> | 1.5-2.0 | Silt, sand, clay | Shelf-slope | # Site Summary Form 6 Proposal 637 Site MV-04B Line 1 CDP 6901; Line 9 CDP 1821 #### **SSDB Data Files** Regional CDP Trackline Map mv_cdpmap_annotate.pdf Seismic Data Figures line1_mv04.pdf; line1_mv04_w_site.pdf; line9_mv04.pdf; line9_mv04_w_site.pdf SEG-Y Data line1_stack.segy; line9_stack.segy Navigation Data line1_nav.txt; line9_nav.txt #### **IODP Site Summary Forms:** #### Form 1 - General Site Information Please fill out information in all gray boxes Revised 7 March 2002 | New | Revised | | |-----|---------|--| #### **Section A:** Proposal Information Title of Proposal: A Shallow Drilling Campaign to Assess the Pleistocene Hydrogeology, Geomicrobiology, Nutrient Fluxes, and Fresh Water Resources of the Atlantic Continental Shelf, New England Date Form Submitted: 01/15/10 Site Specific Objectives with Priority (Must include general objectives in proposal) The primary objectives of drilling are to characterize the distribution of fresh-to-brackish water on the Atlantic continental shelf and to understand the fluid emplacement mechanisms which were active on the continental shelf during the Pleistocene. We will measure chemistry, microbiology, fluid pressure, and isotopic composition of the Atlantic
continental shelf aquifers and confining units. MV-05B will characterize the saltwater-dominated zone of the transect. Three holes will be drilled. Hole A is for petrophysics. Hole B will be continuously cored and used for hydrogeologic tests and detailed water chemistry sampling. Hole C will be for spot coring for the collection of pristine microbiological samples. List Previous Drilling in Area: AMCOR wells 6001, 6009, 6020, 6021; COST wells B-2, G-1, G-2, ODP Leg 174A, IODP Exp. 313 #### Section B: General Site Information | Site Name: | | | If site is a reoccupation of an old DSDP/ODP | | | |------------------------|-------------------|------|--|---|--| | (e.g. SWPAC-01A) | | | Site, Please include | 1 | | | | | | former Site # | | | | Latitude: | Deg: 40.3771 N | Min: | | | | | Longitude: | Deg: 70.0119 W | Mi | Min: | | | | Coordinates
System: | WGS 84, Other () | | | | | | Priority of Site: | Primary: X | Alı | t: | | | | | | | | | | Area or Location: New England continental shelf USA Distance to Land: Water Depth: 79 m ## **Section C:** Operational Information | | | Sediments | | | | В | asement | | |---------------------------------|------------------------|-----------------------|-----------|---------------|-------------------------------|---------------|----------------------------|-----------------------------| | Proposed Penetration: | Recent to Cret | taceous sedin | nents | | Not ap | plicable | | | | (m) | What is the total sed. | thickness? 775 | n | 1 | | | | | | G 17:1 1 : | ~ · · · · | | | | Т | Total Penetra | ation: 775 | m | | General Lithologies: | Sand, silt, and | clay | | | | | | | | Coring Plan: (Specify or check) | Plan will be de | * | | | • | | | кр. 313. | | | 1-2-3-APC VF | PC* XCB | MDCB. | PCS | RCB R | ke-entry* Sy | HRGB
estems Currently U | Inder Development | | Wireline Logging
Plan: | Standard Too | | | Special | Tools | | I | LWD | | | | Borehole 7 Nuclear Ma | | Bore | rmation Fluid
ehole Temper | | _ | Gamma Ray | | | | Resonance Geochemic | al | | ressure
ehole Seismic | e [| _ | | | | Resistivity | Side-Wall C | Core | | | | | | | | Acoustic | | | Othe | ers (| , | Others (| , | | Max.Borehole
Temp. : | Expected value (For | r Riser Drilling) | | Oun | | , | Ollers (| , | | Mud Logging: | Cuttings Sample | ing Intervals | | | | | | | | (Riser Holes Only) | from | m | to | | m, | | m in | tervals | | | from | m | to | | m, | | m in | tervals | | | | | | | | H | Basic Samplin | g Intervals: 5m | | Estimated days: | Drilling/Coring: 22. | .1 Loggi | ng: 4.3 | | | | -Site: 26.4 | , | | Future Plan: | Longterm Borehole | Observation Pla | n/Re-entr | y Plan - 1 | None | | | | | | | | | | | | | | | Hazards/ | Please check follow | ring List of Poten | tial Haza | rds | | | What is yo | our Weather | | Weather: | Shallow Gas | Complicated Seabed | Condition | Hydrothe | rmal Activity | | | (Preferable
the reasons) | | | Hydrocarbon | Soft Seabed | | Landslide a | and Turbidity C | | | August to ricanes and | | | Shallow Water Flow | Currents | | Methane H | ydrate | | vinter stori | | | | Abnormal Pressure | Fractured Zone | | Diapir and | Mud Volcano | | | | | | Man-made Objects | Fault | | High Temp | erature | | | | | | H ₂ S | High Dip Angle | | Ice Condition | ons | | | | | | CO ₂ | | | | | | | | | | | | | | | | | | ## Form 2 - Site Survey Detail ## **IODP Site Summary Forms:** Please fill out information in all gray boxes New Revised | osal # | ‡: 637-Full2 | | Site #: | MV-05B | Date Form Submitted: 01/15/10 | |--------|-------------------------------------|--------------------------|-----------------|---|---| | | Data Type | SSP
Requir-
ements | Exists
In DB | Details of a | vailable data and data that are still to be collected | | 1 | High resolution | | | Primary Line(s):
Line 1 (CDP 2250) | :Location of Site on line (SP or Time only) | | | seismic reflection | | | Crossing Lines(s):
Line 10 (CDP 2115) | | | 2 | Deep Penetration seismic reflection | | | Primary Line(s): USGS Line 5 Crossing Lines(s): | Location of Site on line (SP or Time of | | 3 | Seismic Velocity [†] | | | Interval velocity from s | seismic processing | | 4 | Seismic Grid | | | 2D seismic grid of con | tinental shelf collected in 2009 | | 5a | Refraction (surface) | | | | | | 5b | Refraction (near bottom) | | | | | | 6 | 3.5 kHz | | | Collected along 2D sei | Location of Site on line (Time) smic lines on continental shelf in 2009 | | 7 | Swath bathymetry | | | J | | | 8a | Side-looking
sonar (surface) | | | | | | 8b | Side-looking
sonar (bottom) | | | | | | 9 | Photography or Video | | | Assorted USGS image | ry exists | | 10 | Heat Flow | | | | | | 11a | Magnetics | | | | | | 11b | Gravity | | | | | | 12 | Sediment cores | | | Assorted grab samples | from USGS exist | | 13 | Rock sampling | | | | | | 14a | Water current data | 1 | | Available | | | 14b | Ice Conditions | 1 | | | | | 15 | OBS microseismicity | | | | | | 16 | Navigation | | | | | | 17 | Other | | | | | | SSP (| Classification of Site: | | SSP Wate | chdog: | Date of Last Review: | | | Comments: | | ~1 man | | Dute of Lust Review. | X=required; X*=may be required for specific sites; Y=recommended; Y*=may be recommended for specific sites; R=required for re-entry sites; T=required for high temperature environments; † Accurate velocity information is required for holes deeper than 400m. ## Form 3 - Detailed Logging Plan ## **IODP Site Summary Forms:** | New Revised | |-------------| |-------------| | D 1 # 627 E 110 | | C' H MALOSD | | | D . E | 0.1 1.0 | 1 /1 5 /1 0 | |---|---|----------------------|-------------|--|-------------------|------------------------------|-------------| | Proposal #: 637-Full2 Water Depth (m): 79 | | | | Date Form Submitted: 01/15/10 Basement Penetration (m): 0 | | | | | water Depth (m): 79 | Sed. Penetration (1 | n): //3 | | Basemei | it Penetration (i | n): 0 | | | Do you need to use the conical | side-entr | y sub (CSES) at this | s site? Yes | S 🗌 | No | • | | | Are high temperatures expected at this site? Yes ☐ No | | | | | | | | | Are there any other special requirements for logging at this site? Yes No | | | | | | | | | If "Yes" Please describe requirements: LWD | | | | | | | | | What do you estimate the total logging time for this site to be: 4.3 days | | | | | | | | | Measurement Type Scientific Objective | | | | | | Relevance
(1=high, 3=Low) | | | Neutron-Porosity | Alternate to LWD density-neutron; not required if run LWD | | | | 2 | | | | Litho-Density | Alterna
LWD | te to LWD density | -neutron ar | nd gamma ra | y; not re | equired if run | 2 | | Natural Gamma Ray | Alternate to LWD gamma ray; not required if run LWD | | | | 2 | | | | Resistivity-Induction | Alternate to LWD resistivity; not required if run LWD | | | | 2 | | | | Acoustic | Detailed sonic velocity for synthetic seismograms and core-log-seismic integration | | | | 1 | | | | FMS | Alternate to LWD resistivity-gamma ray; not required if run LWD | | | | 2 | | | | BHTV | Not required | | | | 3 | | | | Resistivity-Laterolog | Alternate to LWD resistivity; not required if run LWD | | | 2 | | | | | Magnetic/Susceptibility | Alternate lithologic indicator; not required if run LWD | | | | 2 | | | | Density-Neutron (LWD) | on (LWD) High-quality density characterization of sediments in an intact borehole to define bulk physical properties. | | | | 1 | | | | Resitivity-Gamma Ray | High-qu | | characte | | | sediments, | 1 | | (LWD) | freshwater-saltwater porewater determination, and data for formation factor (microbiology, fluids) in an intact borehole. | | | | | | | | Other: Special tools (CORK, | | | | | | 1 | | | PACKER, VSP, PCS, FWS, WSP | | | | | | | | | WSI | | | | | | | | | | | | | ignificant basement
ire deployment of | | | | ## Form 4 – Pollution & Safety Hazard Summary ## **IODP Site Summary Forms:** Please fill out information in all gray boxes | New | | Revised | | |-----|-----------|---------|--| | | \bigcup | | | | P | roposal #: 637-Full2 | Site #: MV-05B | Date Form Submitted: 01/15/10 | | | |---|--|---|--|--|--| | | | | | | | | 1 | Summary of Operations at site: (Example: Triple-APC to refusal, XCB 10 m into basement, log as shown on page 3.) | APC to refusal, followed by XCB and RCB as necessary to reach TD in sediment Drilling plan will be similar to that of IODP Exp. 313 based on similar lithology and TDs. | | | | | 2 | Based on Previous DSDP/ODP drilling, list all hydrocarbon occurrences of greater than background levels. Give nature of show, age and depth of rock. | No previous DSDP/ODP/IODP drilling at the IODP Exp. 313 did not have hydrocarbon issu | | | | | 3 | From Available information, list
all commercial drilling in this
area that produced or yielded
significant hydrocarbon shows.
Give depths and ages of
hydrocarbon-bearing deposits. | Previous USGS and COST drilling did not ind | licate any hydrocarbon occurrence. | | | | 4 | Are there any indications of gas hydrates at this location? | No gas hydrate indications at this location. | | | | | 5 | Are there reasons to expect hydrocarbon accumulations at this site? Please give
details. | No reason to expect accumulation of hydrocar
not show hydrocarbons, and documented that
velocity analysis does not show any hydrocarb | source rocks are immature. Initial seismic | | | | 6 | What "special" precautions will be taken during drilling? | A drilling program utilizing conductor pipe, maintain formation integrity, maximize scie tools. | | | | | 7 | What abandonment procedures do you plan to follow: | Standard IODP procedures of abandonment building off procedures of IODP Exp. 313. | will be followed for shallow MSP holes | | | | 8 | Please list other natural or
manmade hazards which may
effect ship's operations.
(e.g. ice, currents, cables) | Fishing and lobster trapping are common in exists nearby. These hazards are easily more communication and notification. | | | | | 9 | Summary: What do you consider the major risks in drilling at this site? | Borehole stability and integrity/maintenance v | vill be the major risk drilling this site. | | | # **IODP Site Summary Forms:** ## Form 5 – Lithologic Summary | | | | | | New | Revise | ed | |-----------------------------|---|--|---------------------------------|------------------|-----------------------|--|----------| | Proposal #: 637-Full2 | | Site #: MV-05B Date Form | | | Submitted: 01/15/10 | | | | Sub-
bottom
depth (m) | Key reflectors,
Unconformities,
faults, etc | Age | Assumed
velocity
(km/sec) | Lithology | Paleo-environme
nt | Avg. rate
of sed.
accum.
(m/My) | Comments | | 0-775 | | <cret.< td=""><td>1.5-2.0</td><td>Silt, sand, clay</td><td>Shelf-slope</td><td></td><td></td></cret.<> | 1.5-2.0 | Silt, sand, clay | Shelf-slope | # Site Summary Form 6 Proposal 637 Site MV-05B Line 1 CDP 2250; Line 10 CDP 2115 ### **SSDB Data Files** Regional CDP Trackline Map mv_cdpmap_annotate.pdf Seismic Data Figures line1_mv05.pdf; line1_mv05_w_site.pdf; line10_mv05.pdf; line10_mv05_w_site.pdf SEG-Y Data line1_stack.segy; line10_stack.segy Navigation Data line1_nav.txt; line10_nav.txt